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Welcome to the Workshop Day

* This is part of a 3-day hands-on ML workshop series.
* Today’s focus: Machine Learning Infrastructure & MLOps.

 We'll bridge the gap between notebook
experiments and real-world deployments.
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What We’ll Do Today

* Learn how to take ML prototypes
and turn them into production systems.

* Explore best practices from
modern software engineering.

* Build confidence working with deployment,
automation, and infrastructure tools.
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Topics We'll Cover

* Refactoring notebooks into testable Python code

* Model deployment via APIs (REST, gRPC, MQTT, WebSocket)

* Docker and containerization for reproducibility

* Orchestration with Docker Compose and Kubernetes

* Cloud & On-Premise infrastructure with Infrastructure as Code
* Object storage for data and models

* ClI/CD automation with GitHub Actions

* Data pipelines using Airflow, Prefect, Dagster
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From Notebooks

to Production Code
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Let’s Get Started!

* First up: why we need to move beyond notebooks.
 What does “production-ready ML” actually look like?

* How do we get there?
e And what tools are involved?
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From Notebooks to Production Code

* ML development often begins in Jupyter notebooks.

* Notebooks are great for:
* Data exploration
* Visualization
* Rapid experimentation

e But they are not suitable for production
environments.
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Why Notebooks Don’t Scale

* Notebooks are not plain text
» Stored as JSON: difficult to diff and merge
* Hard to collaborate on via Git

e Difficult to reuse or test
e No modular functions
* No test coverage

* Poor integration with tools:
* Formatters, linters, CI/CD, IDEs

vives EIEE]

"metadata": {

"kernelspec": {
"display_name™: ".venv",
"language": "python",
"name": "python3"

¥

"language_info": {
"codemirror_mode": {

"name": "ipython",
"version": 3
5

"file_extension": ".py",

"mimetype"”: "text/x—-python",

"name": "python",

"nbconvert_exporter": "python",

"pygments_lexer": "ipython3",

"version": "3.11.2"
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What to Do Instead

e Refactor logic into modular .py files

* Use notebooks only as thin wrappers
* Import reusable logic
* Visualize results

* Combines strengths of both notebooks
and Python modules
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Example: A Messy Notebook (1/2)

Let’s take a common all-in-one notebook and refactor it.

# cell 1: install dependencies
Ipip install pandas scikit-learn matplotlib seaborn

# cell 2: import libraries

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.linear_model import LinearRegression
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A Messy Notebook (2/2)

# cell 3: load data

df = pd.read_csv("data.csv")

X = df[["featurel”, "feature2"]]
y = df["target"]

# cell 4: train and visualize

model = LinearRegression()

model.fit(X, y)

plt.scatter(X["featurel"], y)

plt.plot(X["'featurel"], model.predict(X), color="red")

W hogeschool
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Why This is a Problem

* Everything is mixed together
* No separation of concerns

* Impossible to test or reuse
* Not suitable for CI/CD or automation
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Project Refactor — Folder Structure

Example folder structure for cleanup:

—— data.py

—— model.py

—— train_model.py
—— run_inference.py
—— requirements.txt
—— tests/

| L—test_model.py

L— notebooks/
L explore_and_plot.ipynb
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data.py: Data Loading

import pandas as pd

def load data(path="data.csv"):
df = pd.read _csv(path)
X = df[['featurel”, "feature2"]]
y = df["target"]
return X, y

vives EIEE]



[y
' VLAIO TETRA MLOps4ECM

model.py: Model Logic

from sklearn.linear_model import LinearRegression
import joblib

def train_model(X, y):
model = LinearRegression()
model.fit(X, y)
return model

def save_model(model, path="model.joblib"):
joblib.dump(model, path)
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Training Script: train_model.py

from data import load_data
from model import train_model, save_model

X, y = load_data()
model = train_model(X, y)
save_model(model)
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Inference Script: run_inference.py

from data import load data
from model import load _model, predict

X, =load datal)
model = load_model()
y_pred = predict(model, X)

print(y_pred[:5])

vives EIEE]
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Unit Testing with pytest

from data import load_data
from model import train_model, predict

def test_model_training_and_prediction():
X, y = load_data()
model = train_model(X, y)
preds = predict(model, X)
assert len(preds) == len(y)
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Benefits of This Refactor

* Modular, reusable logic
e Ready for testing and automation
 Easier to debug, scale, and maintain

 Notebooks become visualization tools,
not core logic
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Python Dependencies: requirements.txt

* Avoid !pip install ... in notebooks
* Instead, define all dependencies in a requirements.txt file
pandas==2.2.3
scikit-learn==1.6.1
matplotlib==3.10.1
seaborn==0.13.2
* Ensures reproducibility and clean version control
* Use pinned versions to avoid unexpected changes



N
' VLAIO TETRA MLOps4ECM

W hogeschool

vives
Generating requirements.txt

* You can automatically generate the file from your environment:

pip freeze > requirements.txt

* Other users (or CI/CD systems) can then install everything with:
pip install -r requirements.txt

* Essential for automation and containerization
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Isolating Projects: Virtual Environments

* Avoid polluting system Python

* Keep each project self-contained and reproducible

python3 -m venv .venv
source .venv/bin/activate
pip install -r requirements.txt

» Add .venv/ to your .gitignore
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Looking Ahead: Toward Containers

* requirements.txt is just the beginning
 Later in the course, we’ll package the whole environment

e Container images will include:
* Python version
* System libraries
* Your code + dependencies
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Model Deployment and Serving
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Model Deployment and Serving

* Up to now, we trained models using notebooks and Python scripts.

* But training is only the first step,
* the real goal is to serve models
* to external users or systems.
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Deployment Strategies

* There are two main approaches to model deployment:

e Server-side deployment
* Edge deployment
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Server-Side Deployment

* The model runs on centralized server hardware.
* Clients send requests (e.g. via APIl) to get predictions.

* Adva ntages: PRI KL TR
* Centralized control over model versions. =7 :
* Access to high-performance resources.
* Better security and logging.
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Edge Deployment

* Model runs close to the data source (e.g. phone, sensor,
microcontroller).

* Advantages:
* Low latency, no need to send data to the cloud.
* Offline support: works without internet.
* Better privacy: data stays local.
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Choosing a Deployment Strategy

e Server-side is common and flexible.
* Edge is emerging but resource-constrained.

* We focus on server-side in this workshop.
* Edge deployment will be covered in a later course.
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Communication Protocols for

Model Serving



w
' VLAIO TETRA MLOps4ECM

vives K5
Making Your Model Accessible

* Once your model is deployed on a server, it needs to talk to clients.

* This requires a communication protocol
between the server and its users.

* We’ll cover the most common options
used in real-world ML systems.
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REST APIs

* REST = Representational State Transfer.

e Based on standard HTTP methods:
* GET, POST, PUT, DELETE

* Works with all major platforms and tools. WHAT IS A REST API?
* Stateless: each request is self-contained. e SERVER
(e () —
ot —

EEEEEE

survey_id: 123,
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WHAT IS A REST API?

CLIENT SERVER
o\
— | HTTP ™ | ( URL | —
L o)
posT veyari; —
DELETE /s urv eys/123/ resp ...

PUT

k N
| TsoN | «—

/

response_id: 4

mannhowie.com
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REST APIs — Example & Trade-offs

* Example:
A client sends a POST /predict request with features in JSON.
The server returns a JSON with the prediction.

. [ ]
Advantages: WHAT IS A REST API?
e Easy to use and understand.
k ” I d I tf CLIENT SERVER
* Works well across languages and platforms. ——— o ~
guag P —’(E'TTL_“&J—’
* Scales well due to statelessness. e fourveys )

* Considerations: \ — -\,‘_,,J
* Verbose payloads (JSON).
* Higher latency per request. _
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WebSockets

* Provides a persistent, full-duplex connection.
* Server and client can push messages to each other anytime.

* |deal for real-time applications WebSockets
Server

(dashboards, chat, etc.). _Client g

Initiating Handshake

Connection Established

Data Transfer

Connection Closure
S —>>
- blog.algomaster .io )
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Client Server

L=

Initiating Handshake

Connection Established

Data Transfer

Connection Closure
s =1

blog.algomaster.io




w

. VLAIO TETRA MLOps4ECM

(o]

vives 3
WebSockets — Use Cases

* Advantages:
e Real-time, bidirectional communication.

 Low overhead after connection is established.
WebSockets

* Works across platforms. Client Server

* Considerations:
* Requires connection management.
* More complex to scale.
* Open connections consume server resources.

Initiating Handshake

Connection Established

Data Transfer

Connection Closure
S —>>
- blog.algomaster .io )




E VLAIO TETRA MLOps4ECM

W hogeschool

vives
MQTT

* Lightweight messaging protocol for loT and constrained devices.
* Works on a publish/subscribe model.

e Designed for unreliable or low-bandwidth networks.
p
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MQTT — Strengths and Limitations

* Advantages:
* Very lightweight and efficient.
* |deal for thousands of devices.
e Supports reliable delivery (QoS).

* Considerations:

* Not browser-friendly.
* Needs custom handling for security.

=
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FastAPl for Model Serving
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What is FastAP|?

* Modern Python web framework for high-performance APIs.
* Built on Python type hints, making it easy and fast.
* Great for ML engineers and data scientists.

G FastAPI
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Why FastAPI|?

* Simplicity: Define APIs with a few Python functions.

* Performance: Async support and fast execution.

e Auto Docs: Swagger Ul is generated automatically.

* Lets you stay in Python while building production APIs.
 Perfect for wrapping ML models in REST endpoints.

G FastAPI



Creating Routes: Example App (1/2)

from fastapi import FastAPI
from pydantic import BaseModel
from typing import List

app = FastAPI()
class BlogPost(BaseModel):
title: str

content: str

posts =[]
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Creating Routes: Example App (2/2)

@app.get("/posts”, response_model=List[BlogPost])
def list_posts():
return posts

@app.post("/posts")

def create post(post: BlogPost):
posts.append(post)
return {"'message": "Post added"}

vives EIEE]



Interacting with This API

* GET /posts: list all blog posts.
* POST /posts: add a new blog post.

e Each route uses decorators like @app.get(...).
* Pydantic models like BlogPost handle validation.

vives EIEE]

@ FastAPI
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Serving ML Models with FastAPI (1/2)

from fastapi import FastAPI
from pydantic import BaseModel
import torch

app = FastAPI()

model = torch.load("model.pt")
model.eval()
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Serving ML Models with FastAPI (2/2)

class InputData(BaseModel):
featurel: float
feature2: float

@app.post("/predict")
def predict(data: InputData):
with torch.no_grad():
inputs = torch.tensor([[data.featurel, data.feature?]])
prediction = model(inputs)
return {"prediction": prediction.item()}



Calling the Prediction Endpoint

* Send POST /predict with JSON like:

{
"featurel": 3.5,

"feature2": 1.2
}

e Server returns:

{
"prediction": 842000.0

}

* Clean, Pythonic, and production-ready.
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Swagger Ul: Auto Docs for Free

* Visit http://localhost:8000/docs in your browser.

* You get:
* List of endpoints
* Input/output schemas
* Live request testing
* Developer-friendly interface

W hogeschool
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Schemes
|HT|']J ~ | Ruthorize g |
pEt Bverything about your Pets N
m fpet Addanew pet to the store i
“ fpet Update an existing pet ﬁ
ﬂ fpet/findByStatus Finds Pets by status i
FpetffindByTaess Finds Pets by tags
ﬂ fpet/{petId} FindpetbyID i
m fpet/{petld} Updates a petin the store with form data i
m fpet/{petId} Deletesa pet )
m fpet/{petld} fuploadImage uploads animage ™
v

store Access to Petstore arders
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Frontends

e A model APl needs clients to interact with it — this is the frontend.

e Could be:

* Web browsers

* Mobile apps

e Desktop tools

* Embedded systems

* We'll focus mainly on browser-based
frontends today.
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JavaScript Frameworks

* Popular for building interactive web apps.
* Written in JavaScript, running fully in the browser.
* Sends requests (via Fetch/AJAX) directly to REST APIs.

e Examples:
* React
* Vue.js
* Svelte

 Very scalable and flexible.
* Backend and frontend are decoupled.

W hogeschool
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Python-Based Frontends with Flask

* Handy for internal tools or prototyping in Python.

* Flask serves:
 The HTML frontend
* Requests to the model-serving backend

e Simple: no JavaScript required.

* Acceptable overhead for internal apps.

from flask import Flask, request, render_template_string
import requests

Flask

web development,
one drop at a time
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Dashboarding: Dash, Streamlit, Gradio

* Build Uls in Python, no HTML/IJS required.

* Tools:
e Dash (from Plotly)
e Streamlit

* Gradio e
* Run on server, call model API from -
backend Python. = .11 —
* |deal for: ‘
* Rapid prototyping ’ :

* |nteractive demos
* Internal dashboards
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When to Use Which Frontend?

* React/Vue: Public or production web apps.
* Flask: Quick prototypes, Python-first teams.
* Dash/Streamlit/Gradio: Demos, dashboards, ML exploration.

* Tradeoffs:
 Flexibility vs. simplicity
* JS skills vs. Python comfort
e Customization vs. speed of development
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Beyond the Browser

 Not all clients are browsers.

e Other frontend types include:
* Smartphone apps (Kotlin, Swift, Flutter)
* Desktop apps (Electron, Qt, C#)
* |oT & embedded (C++, Go, Rust)

* As long as they can send HTTP/MQTT/etc
they can talk to your model server.
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Containers and Virtual Machines
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Why We Need Containers and VMs

* We've learned how to train models and expose them via APIs.
* But deploying these services reliably and consistently is critical.

* We need packaging tools that work across:
* Development
* Staging
* Production

* This is where virtual machines and
containers come in.
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Virtual Machines (VMs)

* AVM is a full emulation of a computer system.
* Runs a complete guest OS on top of a host OS.

App 1 App 2 App 3

* VMs include:
* Their own OS kernel
* File system and system libraries
* Network stack and system tools

Bins/Lib Bins/Lib

Bins/Lib

Guest OS Guest OS

Guest OS

Hypervisor

Infrastructure

[ e
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App 1

BinS/Lib

Guest OS

[

App 2

Bins/l_ib

Guest OS

Infrastructure

App 3

Blns/le

Guest OS

hhhhhhhh
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VM Overhead

* Downsides of VMs:
* High memory and disk usage (gigabytes).
 Slow startup (can take minutes).

App 1
« Complex to manage at scale. 8

App 2 App 3

Bins/Lib Bins/Lib

Bins/Lib

e Still valuable for infrastructure
and OS-level testing.

Guest OS Guest OS

Guest OS

Hypervisor

Infrastructure

[ e
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Contalners

e Containers don’t run their own OS.
* Instead, they share the host OS kernel.

A container includes:
o Application code Bins/Lib Bins/Lib

* Dependencies (Python libs, binaries)
* Minimal system utilities

Container Engine

Operating System

Infrastructure

[ i
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Bins/Lib Bins/Lib

App 3

Bins/Lib

Container Engine

Operating System

[

Infrastructure




H VLAIO TETRA MLOps4ECM

W hogeschool
vives EIEE]

Why Containers Are Better for ML

e Containers start in milliseconds, not minutes.
* Use megabytes, not gigabytes.

* Easy to deploy and scale.

e |deal for microservices and
ML model serving.

Bins/Lib Bins/Lib Bins/Lib

Container Engine

Operating System

Infrastructure

[ i
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Containers for Machine Learning

* ML models depend on exact library versions
(e.g. NumPy, PyTorch, CUDA).

* Containers capture the full environment, not just your code.

* Makes ML projects:
* Reproducible
* Portable

* Deployable
* Traceable

P
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Versioning and Reproducibility

* Containers are versionable artifacts:
* Tag them: ml-service:1.0.0
* Rebuild them deterministically

* Enables:
e Safe rollbacks

* Exact replays of past training runs
e Consistent behavior across machines
* Key MLOps principle: infrastructure = code @
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Why This Matters in Practice

* Avoid:
* “It works on my machine”
* Library conflicts
* Inconsistent runtime environments

* Gain:
* Confidence in experiments
* Smooth collaboration across teams
» Safer deployments in production @



W/ hogeschool
vives

Introduction to Docker
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What is Docker?

* Docker is the most widely used tool for working with containers.
* Packages your app and its dependencies into a portable image.

* Run it anywhere — dev machine, server, or cloud — with the same
behavior.

* Solves the “it works on my machine” problem.
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Running Your First Docker Container

e Use pre-built images from Docker Hub.
docker run hello-world

* Downloads and runs a test image to verify setup.
docker run -it python:3.12

e Starts Python 3.12 in interactive mode (-it).

* Gives you a Python shell inside a container.

W hogeschool
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Useful Docker CLI Commands

* docker ps — show running containers

* docker ps -a — include stopped containers

* docker stop <name> — stop a container

e docker rm <name> —remove a stopped container

* docker images — list downloaded images

These help you inspect and manage
your containers and images.
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Example: PostgreSQL with Docker

docker run -d --rm \
-e POSTGRES_PASSWORD=secret \
-0 5432:5432\
-v ./pgdata:/var/lib/postgresql/data \
--name my-postgres postgres:17

* Runs PostgreSQL 17 in the background (-d)

e Cleans up automatically after shutdown (-rm)

* Exposes port 5432 for connections (-p)

* Persists data in ./pgdata (-v)

* Assigns an easy name for management (--name)
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Building Custom Docker Images
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Why Build Your Own Image?

* Prebuilt images are useful — but often not enough.

e Custom images let you:
* |Install your own dependencies
* Package your code
* Create consistent environments for others

RUN
>

W hogeschool
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Docker File Docker Image Docker Container
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Minimal Example: FastAPI Service

A simple Dockerfile that builds a container for a FastAPI app:
FROM python:3.12-slim

WORKDIR /app

COPY requirements.txt .
RUN pip install -r requirements.txt

COPY ..

CMD ["fastapi”, "run”, "main.py"]
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Building the Image

To build the image:
docker build -t miservice:1.0.

-t assigns a name and version tag.
* The . at the end means “build from current directory”.
You can now run this container like any other image.

W hogeschool
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Publishing to Docker Hub

docker login
docker tag miservice:1.0 your-name/milservice:1.0
docker push your-name/milservice:1.0

* docker tag gives your image a full registry name.
* docker push uploads it to Docker Hub.
* Anyone can then pull and run it.

W hogeschool
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‘." dockerhub




Alternative: Using Quay.io

docker login quay.io

vives EIEE]

docker tag miservice:1.0 quay.io/your-org/miliservice:1.0

docker push quay.io/your-org/mlservice:1.0

e Similar to Docker Hub.
* Has better usage limits (downloads)
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Alternative: Custom Registry

docker login registry.example.com
docker tag mlservice:1.0 registry.example.com/team/milservice:1.0
docker push registry.example.com/team/milservice:1.0

e Useful for:
* Private images
* Corporate environments
* Air-gapped systems
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Understanding Images vs. Containers

* Image = static blueprint (read-only)
* Container = running process with that image

Running an image creates a new container instance.

RUN
_—

W hogeschool
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Docker File Docker Image Docker Container
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Avoiding the latest Tag

* Never use floating tags like latest.
FROM python:latest # X Don't do this
* Use pinned versions:
FROM python:3.12
e Same for requirements.txt:
pandas==2.2.3
scikit-learn==1.6.1
* Ensures reproducibility and safe deployments.

vives EIEE]
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Containers and Docker for ML

* Containers let us package code, dependencies,
and environments into a single unit.

* They solve real-world ML problems:
[ Reproducibility: Same environment every time
| Portability: Runs on laptop, server, or cloud
« | Isolation: No conflicts with system or other projects
| Scalability: Containers are lightweight and easy to deploy

. Containers are the foundation for deploying reliable, production-
grade ML systems.
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Introduction to Container

Orchestration
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Why Orchestration Matters

* Single containers are great for isolated tasks.
* Real-world systems involve many containers working together.

* Examples in ML systems:
e FastAPlI model server
* PostgreSQL database
e Object storage (S3)
* Frontend (React, Vue)
e Caching (Redis)
* Monitoring (Grafana)
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Tools for Orchestration

* Two common tools:
* Docker Compose: Simple, local development
* Kubernetes: Production-grade, distributed

 We'll start with Docker Compose.

W hogeschool
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What Is Docker Compose?

* Tool to define and run multi-container apps using YAML.

* Created for small to mid-sized projects.
* Runs everything with a single command.

@&5 docker
é{@ Compose
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Example: ML Deployment with Compgg‘ées

(1/2)

services:
frontend:
image: my-frontend:1.0
ports:
- "3000:3000"
backend:
build:
context: ./backend
ports:
- "8000:8000"
environment:
- DATABASE_URL=postgresql://user:S{PW}@db:5432/appdb"
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Example: ML Deployment with Compose (2/2)

db:
Image: postgres:15
environment:
- POSTGRES USER=user
- POSTGRES PASSWORD=S{PW}
- POSTGRES _DB=appdb
volumes:
- pgdata:/var/lib/postgresql/data

volumes:
pgdata:
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Compose Project Breakdown

* frontend: Exposes port 3000 to host.
* backend:

e Built from local Dockerfile
e Uses env var to connect to database

e db:
» Official Postgres image
* Uses named volume for persistence

vives EIEE]

@&5 docker
é{@ Compose
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Starting the System

docker compose up
e Builds and runs all services.

Just a single command to bring
up the entire system!

vives EIEE]

docker

(9= Compose
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Core Docker Compose Commands

e docker compose up — start all services
e docker compose up -d — run in background
* docker compose up --build — force rebuild

* docker compose down — stop and remove everything
e docker compose build — build images from source
e docker compose ps — list running containers

* docker compose logs — view logs
* docker compose logs -f backend — follow backend logs

W hogeschool
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Using Prebuilt Images

services:
frontend:
image: registry.example.com/my-frontend:1.0

* Compose pulls the image if missing.
* Fast and easy if the image already exists.

W hogeschool
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Building Local Images

services:
backend:

build:
context: ./backend

* Builds image from local Dockerfile.
* Use this during development.
* Rebuild with:

docker compose up --build

vives EIEE]



Exposing Services to Host

ports:
- "3000:3000"
- "8000:8000"

* Frontend = localhost:3000
 Backend = localhost:8000

e Useful for browser access, Postman, etc.

vives EIEE]
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Keeping Services Internal

services:
db:
Image: postgres:15
environment:

* No ports: means not exposed externally.
* Improves security by reducing attack surface.

W hogeschool
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Volumes: Bind Mounts

volumes:
- ./notebooks:/home/jovyan/work

* Syncs folder from host to container.

* Good for development and notebooks.

* But:
* Host-dependent
* Can have permission issues

W hogeschool
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Volumes: Named Volumes

volumes:
- pgdata:/var/lib/postgresql/data

volumes:
pgdata:

* Docker-managed storage.
e Survives compose down and container restarts.
* |deal for databases and production.

W hogeschool

VIVesS



vives EIEE]

Environment Variables (Inline)

environment:
- DEBUG=true
- MAX_WIDTH=1000

- NAME=example.com

e Simple, but hardcoded.
 Not suitable for secrets.



VLAIO TETRA MLOps4ECM

10

e

Environment Variables from .env

.env file:
DEBUG=true
BACKEND PORT=8000

docker-compose.yaml:

ports:

- "S{BACKEND PORT}:S{BACKEND PORT}"
environment:

- DEBUG=S{DEBUG}

* Great for development overrides and secrets.

W hogeschool
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Kubernetes: Industrial-Scale
Container Orchestration
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Why Kubernetes?

* Docker Compose is great for small/local setups.
* Kubernetes solves orchestration at production scale.
* Designed to manage containers across multiple machines.

kubernetes

* Originally from Google; now maintained by the CNCF.
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Kubernetes = a Platform, Not Just a Tool

* Requires a control plane:

e Scheduler

* Network controller
* Volume manager

* Service discovery

* Works using declarative configuration: .$

* You define the desired state,

Kubernetes enforces it. kU bEI"ﬂEtES
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Example: PostgreSQL with Kubernetes (1/4)

apiVersion: vl
kind: PersistentVolumeClaim
metadata:
name: pgdata
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 1Gi
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Example: PostgreSQL with Kubernetes (2/4)

apiVersion: apps/v1
kind: Deployment
metadata:
name. db
spec:
rep“C35:1
Se|8ct0r:
matchLabels:
app: db
metadata:
labels:
app: db
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Example: PostgreSQL with Kubernetes (3/4)

spec:
containers:
- name: db
Image: postgres:15
env:
- name: POSTGRES USER
value: user
- name: POSTGRES_PASSWORD
value: password
- name: POSTGRES DB
value: appdb
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Example: PostgreSQL with Kubernetes (4/4)

volumeMounts:
- name: pgdata
mountPath: /var/lib/postgresql/data
volumes:
- name: pgdata
persistentVolumeClaim:
claimName: pgdata



Why It's More Complex

* More boilerplate than Compose

 Also includes:
* Load balancing
e Health checks
* Auto-scaling
* Monitoring

* Huge power, but higher learning curve

vives EIEE]

kubernetes



MLOps4ECM

113

vives EIEE]

Kubernetes Is Not a Single Product

 Kubernetes defines a standard, not one tool

* Available from many sources:

e Cloud: AWS, Azure, GCP
* On-prem: K3s, MicroK8s
* Enterprise: OpenShift, VMware Tanzu

kubernetes
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Advanced Features: Scaling & Load Balancing

* Declare number of replicas per service

e Kubernetes distributes them and balances traffic

spec:
replicas: 3

 Containers are auto-restarted on failure

kubernetes
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Advanced Features: Rolling Updates

* Kubernetes updates containers without downtime

* If rollout fails:
* Kubernetes rolls back automatically

 Health checks detect broken containers

kubernetes
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Advanced Features: Persistent Storage

* Supports:
* NFS
e Cloud volumes (EBS, Azure Disk)
 Distributed file systems (Ceph)

* Works across nodes, not just local machine

kubernetes
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Advanced Features: Resource Scheduling

* Set resource limits per container:

resources:
requests:
cpu: "500m"
memory: "256Mi"

limits:
cpu: "1" ..@.
memory: "512Mi"
kubernetes

e Kubernetes uses this for
fair scheduling and capacity planning
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Orchestration: When to Use Each

e Use Compose for:
* Dev environments
* Simple demos
* Local tools and dashboards

* Use Kubernetes for:
e High-availability services
* Production workloads
* Teams and CI/CD pipelines

W hogeschool
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Infrastructure Management:
Cloud, On-Premise and
Infrastructure as Code
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Why Infrastructure Matters

* ML applications need more than code:

containers, orchestration, and hosting.

* We’ve used Docker and Kubernetes,
but where do we run them?

* Real-world ML systems need:
* Always-on compute
e Scalable deployment
* Secure networking and data access

W hogeschool
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What Is a Cloud Provider?

* A cloud provider rents out computing resources over the internet:
 Virtual machines, storage, networking, databases, etc.

* You pay for what you use — no need to maintain hardware yourself.

* ldeal for ML workloads that vary
over time (e.g. training jobs).

* No up-front investment:
rent GPUs or large VMs as needed.

Y Google Cloud
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Major Cloud Providers

 Amazon Web Services (AWS)

* Market leader, broadest service range
e Compute (EC2), storage (S3), ML (SageMaker)

* Microsoft Azure
e Strong in enterprise and Microsoft ecosystems
e Good integration with Active Directory, Office

e Google Cloud Platform (GCP)

 Known for Al/ML tools:
GKE, Vertex Al, BigQuery

W hogeschool
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Cloud Abstraction Layers

* Cloud services are structured as layers:
* laaS — virtual machines and networks
* PaaS — managed platforms for apps and databases
e SaaS — fully finished services via Ul or API

 The more abstraction,
the less you manage,
but also less control.

W hogeschool
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laaS: Infrastructure as a Service

* You get virtual machines and networking,
but manage what runs on them.

* Full flexibility, ideal for custom stacks or legacy support.
* You install software, configure services, and apply updates.

Examples:
* AWS EC2, Azure VMs, Google Compute Engine
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PaaS: Platform as a Service

* Platform handles OS, runtime, scaling, networking.
* You deploy code or containers — less operational overhead.
* Great for APls, web apps, and database-backed services.

Examples:
 AWS Elastic Beanstalk, Azure App Service, Google App Engine
* Managed SQL: AWS RDS, Azure SQL DB, Google Cloud SQL
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SaaS: Software as a Service

* You just use the service — no code or deployment needed.
e |deal for integrating common Al capabilities or tools.

Examples:
O
» OpenAl ChatGPT API m Oﬁ% | @ |
O .
* AWS Rekognition g
* Google Vision API laas PaasS Saas

Infrastructure-as-a-Service Platform-as-a-Service Software-as-a-Service

VLAIO TETRA MLOps4ECM

host build consume
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Managed Kubernetes Services

e Kubernetes = industry standard for orchestration
* But self-hosting is complex: certificates, control plane, networking
* Managed services handle the Kubernetes internals for you

Examples:

 AWS: EKS

* Azure: AKS

* Google Cloud: GKE

* You focus on YAML manifests, scaling rules, and deployments
* No need to provision VMs or worry about control plane
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Serverless Container Platforms

* Serverless = no servers to manage
* You deploy code or containers, platform handles the rest

* Key benefit: scale to zero
* No requests - zero cost

* Auto-scale up on demand C

/

Lambda
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* Auto-setup:

PaaS: Simplitying Development

* Focus on writing code, not managing infrastructure
e Great for web apps, APls, backends

 Examples:

* AWS Elastic Beanstalk
* Azure App Service
* Google App Engine

* Runtime environment
e Scaling and load balancing
* Deployment from Git

vives EIEE]

Elastic
Beanstalk
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PaaS for ML: SageMaker Example

* High-level ML platforms on cloud providers:
* AWS SageMaker
* Azure Machine Learning
* Google Vertex Al

* Full ML lifecycle: @
* Data prep

* Training (GPU support)

* Model deployment Amazon SageMaker
* Monitoring and CI/CD pipelines
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Sagel\/laker Coatures

e Studio: Web IDE for ML

* Data Wrangler: Prepare datasets

* Training: Scalable, GPU-enabled

* Autopilot: AutoML for tabular data

* Hyperparameter tuning

* Inference: Real-time, batch, async

* Model Monitor: Drift detection

* Pipelines, Feature Store, Experiments

vives el

Amazon SageMaker
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SaaS for ML and Al

* Highest abstraction: finished apps or APIs
* No model building — just call the API

Examples:

* AWS Rekognition, Polly, Comprehend
* Azure Cognitive Services

e Google Vision Al, Translation API

* OpenAl ChatGPT / GPT-4 API

vives EIEE]

@OpenAl
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SaaS: Benefits and Use Cases

* Pretrained models via HTTP API

* No infra, no training, no deployment
* You just send input and get predictions

* Great for:
* Text summarization
* Speech-to-text
* I[mage tagging
* Chatbots

e Usage-based billing
(tokens, seconds, requests)

vives EIEE]
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On-Premise Infrastructure

* Some companies prefer full control
* Run your own servers in data centers

e Use platforms like:

* Proxmox VE
* VMware ESXi
* Microsoft Hyper-V

 Run VMs, containers (LXC),
and clusters on owned hardware

vives EIEE]

X PROXMOX
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Why Go On-Premise?

* Data control
* Medical, legal, or regulated data

* Security
* Air-gapped or private network systems

* Performance
* Low-latency or large local datasets

* Cost
* Long-running, predictable workloads

 Existing infra or staff
 Skilled sysadmins already in place

vives EIEE]
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Infrastructure as Code (laC)

* Manual setup doesn’t scale — automation is key

 |laC = Define infrastructure using config files
* Code = truth; reusable, versioned, testable

 Tools:
* Terraform: Define VMs, storage, networks (multi-cloud)
* Kubernetes YAML: Declarative service definitions
* Argo CD / Flux: GitOps for K8s (auto-sync from Git)

vives EIEE]
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Why laC Matters

* Enables:
* Automation across environments (dev/stage/prod)
* Repeatable infrastructure
» Safer changes (PRs, version control)

* Treat infrastructure like software:
* Git history, CI/CD, testing
 No snowflake servers

vives EIEE]
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Terraform
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Scalable Storage for Machine
Learning: Object Storage
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Why We Need Scalable Storage

* ML projects generate large, binary files:
e Datasets, model checkpoints, logs, telemetry

* Git is not designed to handle:
* Binary blobs, large files
* High-frequency changes

* ML pipelines need storage that is:
* Scalable, API-driven, binary-safe

W hogeschool
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What Doesn’t Belong in Git

* Git is perfect for source code

e But not for:
* Evolving datasets
 Model binaries (.pt, .onnx, etc.)
* Large log files and experiment outputs

* Binary files in Git:
e Cannot be diffed or merged
* Bloat the repo over time

vives EIEE]
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The Data Flywheel: Continuous Learning

* Production ML often supports automated retraining

* New data constantly collected via: 2

. .
* User interaction, sensors, logs... /\/lli Better ¥ More

product users

* System needs to:

* Ingest - Clean = Version
— Retrain - Deploy

The machine learning
data flywheel

* All steps involve binary files Better Al More data
too large for Git @
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What Is Object Storage?

* A scalable system for storing unstructured binary data

* Upload binary blobs (called objects)

STORAGE TYPES
_ * Each object has: B o
éa * A unique key (like a filename) _% -
% e Optional metadata (tags, content type) = PN T

* Read/write via simple HTTP API

14
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STORAGE TYPES

USE CASE:

BLOCK
STORAGE

FC or iSCSI

Direct Attached
or SAN

Low Latency
Best for Structured Data

FILE
STORAGE

()
IV' V 4‘ ' -¥ 'l"

A

TCP/IP

NFS, SMB

Good Performance
File Sharing, Global File Locking

5JCLOUDIAN

HTTP, REST

Easy Scaling with No Limits
Accessible across LAN & WAN
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Key Properties of Object Storage

* Write-once, read-many model

* Immutable uploads — no in-place mutation

* Designed for:

e Durability (e.g. 11 nines)
* High throughput
e Distributed architectures

* Ideal for ML: logs, data, model weights

W hogeschool
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S3: The Industry Standard API

e AWS S3 launched in 2006

e Uses simple HTTP methods:
 GET, PUT, DELETE, HEAD

e Other providers adopted the S3 API

— S3is the de facto interface
for object storage today

vives EIEE]

Amazon S3
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S3-Compatible Platforms

* Cloud:
 AWS S3, Azure Blob, Google Cloud Storage
* Backblaze B2, Cloudflare R2, Wasabi

* On-prem / self-hosted:
* MinlO
* Ceph

 Same code, different backends,
just change the endpoint

vives EIEE]
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Buckets and Objects

* Object storage is made of:
* Buckets = top-level namespaces
* Objects = binary files inside buckets

* Objects have unique keys (names)

* Metadata is stored alongside the object
* Size, type, date, custom tags

W hogeschool
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HTTP Operations in S3

* PUT - Upload object or create bucket
* GET - Download object or list contents
 DELETE - Remove object or bucket

* HEAD - Read metadata only

— RESTful API: standard HTTP verbs

vives EIEE]
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{ REST-API }




VLAIO TETRA MLOps4ECM

14

(Vo]

W hogeschool

vives
Using S3 from Python: Boto3

import boto3

s3 = boto3.client(
1531’
endpoint_url="https://s3.example.com’,
aws_access key id="ACCESS’,
aws_secret _access key='SECRET,

)
s3.upload_file('model.pt', 'my-bucket’, 'models/model.pt')

* Works with AWS or any S3-compatible endpoint
* Full CRUD (create-read-update-delete) API
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Recommended File Formats for ML Artifacts

* File format matters for:
* Storage cost
* |/O performance
* Portability & safety

 Good formats are:
« | Compressed
« || Portable
« || Safeto load

Avoid: raw CSVs, pickle, raw BMP/WAV
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File Format Cheat Sheet
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Artifact Type Recommended Format(s)

Configs, logs YAML/JSON + gzip, zstd
Tabular/time series Parquet

Images JPEG (lossy), PNG (lossless)
Audio FLAC (lossless), MP3 (lossy)
Models .pt, .onnx, .tar.gz
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Versioning Strategies (S3)

Reproducibility depends on knowing
exactly what data + model was used.

1. Manual Naming Major Minor Palch
models/model\ v1.2.3.pt
datasets/2024-05-01/images.parquet \/ 2
* [0 Flexible "

[ ] -
% Error prone at sca le breaking features bugfixes

changes and
hotfixes

VLAIO TETRA MLOps4ECM
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Versioning Strategies (S3)

2. Native S3 Versioning

* Enable on bucket

* S3 keeps old versions when key is overwritten
* Basic protection against overwrites

3. Versioning Tools

* DVC: Git-style versioning for data

* LakeFS: Branching + commits over S3 buckets
—> Best option for production systems

W hogeschool
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From OLTP to OLAP: Freezing Live Data

* Live systems - OLTP (e.g. PostgreSQL, InfluxDB)

* ML training - Needs frozen snapshots

e Store training data in OLAP format

(e.g. Parquet on S3)
—> Ensures reproducibility

OLTP OLAP
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ETL to S3: The Batch Path

1. Extract from OLTP (e.g. PostgreSQL)
2. Transform — clean, enrich, normalize

3. Load into S3 as partitioned Parquet files
— Enables analytics, training, debugging

Tools: Airflow, dbt, Spark, Polars, DuckDB, ...

vives EIEE]

OLTP OLAP
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S3 as ML Data Backbone

Object storage like S3 is the core layer for ML data:
_ Stores all binary artifacts

- Integrates with Python, Cl, cloud
_ Versioned, scalable, portable

—> A simple foundation
that scales with your ML system

Amazon S3
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Continuous Integration and
Continuous Deployment
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Why Automate ML Workflows?

* ML projects often start with notebooks and ad-hoc scripts.
* Manual steps: training, saving models, uploading to servers...
* This works early on — but doesn’t scale.

* Real ML systems must:
* Ingest new data
* Train and evaluate models
* Deploy, monitor, and iterate
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Manual Workflows Don’t Scale

* Too many manual steps = risk of errors

* Common symptoms:
* “It worked on my machine”
* “Which model version is live?”
e “Can we retrain from last month’s data?”

* We need automation to make ML:
* Reliable
* Reproducible
* Maintainable

W hogeschool
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From Dev + Ops to DevOps

* Traditional teams:

e Devs write code
* Ops manage infrastructure

* Handoff problems:

 Different goals (speed vs. stability)
* No shared responsibility

W hogeschool
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The DevOps Mindset

* DevOps = break the wall between dev and ops

* Use automation pipelines to move from code - production
* Developers own what they deploy

* Core practices:
* Cl —test every change automatically
* CD —deliver those changes to production
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Continuous Integration (Cl)

* Cl =integrate code changes frequently

* Encourages:
* Short-lived branches
* Small, reviewable pull requests

* Cl systems automatically:
* Install dependencies
* Run tests, linters, builds
* Block broken code from merging

Cl = Trust in your shared codebase
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Continuous Delivery & Deployment (CD)

* CD = deliver new code safely and often

* Small, incremental changes - fewer surprises

Two main modes:

* Continuous Delivery: automated pipeline, but human deploys

* Continuous Deployment: fully automatic deploy after tests pass

Deployments become routine, not scary
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Why CI/CD Matters for ML

* ML = more complex than normal software
* Code + data + models + infrastructure

MLOps
* CI/CD helps: P
* Test training pipelines

> * Validate model performance ’C"aCh?“e DevOps
3 .. earnin
g * Automate retraining and deployment ; '
=
- - CI/CDis essential for S

reliable ML systems Engineering

16
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GitHub Actions for CI/CD
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What Is GitHub Actions?

e GitHub’s built-in automation system
* Runs pipelines directly from your repo

* Triggered by:
* Code pushes
* Pull requests
* Manual or scheduled events

e Great for ML workflows:
* No setup needed
 Fully version-controlled
* Integrated with GitHub

vives EIEE]
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GitHub Actions
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Workflows: Structure Overview

A GitHub Actions workflow has:
* Triggers: when to run the workflow
* Jobs: logical units of work (can run in parallel)
e Steps: actual commands or reusable actions

Files live in:
.github/workflows/*.yml

Workflows evolve with your codebase.

vives EIEE]

GitHub Actions

O
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Example: Minimal Test Workflow

-~ .github/workflows/test.yml

name: Run tests on main branch
on:
push:
branches: [main]
jobs:
test:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: actions/setup-python@v5
with:
python-version: '3.13’
- run: pip install -r requirements.txt
- run: pytest.

W hogeschool
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Triggers: When Workflows Run

GitHub Actions workflows can be triggered by:

e push: On code pushes

* pull_request: On PR creation or updates

* schedule: Cron jobs (e.g. nightly retraining)
» workflow_dispatch: Manual runs via Ul/API

Each trigger is useful for different stages of the ML lifecycle.
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Trigger: Code Push

on:
push:
branches: [main]

* Run when code is pushed to main
* |deal for: deployments, building software

I Use with care — not all pushes should auto-deploy!

vives EIEE]
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Trigger: Pull Request

on:
pull _request:

 Best for tests, linting, and validation

* Enforce with branch protection rules
* Blocks merging until all checks pass

L Prevents broken code from reaching main

W hogeschool
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Trigger: Cron Schedule

on:
schedule:
-cron:'0Q * * *!

* Run workflows on a recurring basis

* Examples:
* Nightly model retraining
* Weekly data cleanup
* Periodic evaluations

Runs at midnight UTC in this example.

W hogeschool
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Trigger: Manual (workflow dispatch)

on:
workflow_dispatch:
inputs:
environment:
description: 'Target env'
required: true
default: 'staging'

e Adds a Run Workflow button in GitHub Ul

e Use for:
* Manual deployment
* One-off scripts
* Controlled experiments

W hogeschool
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Jobs and Runners

* A job = a group of steps, run on a virtual machine (runner)

* Runners can be:
e GitHub-hosted (default, auto-provisioned)
 Self-hosted (GPU, on-premise, cloud)

runs-on: ubuntu-latest



Parallel and Dependent Jobs

Jobs can run in parallel:

jobs:
test: ...
lint: ...

Or one after another:

jobs:
build: ...
deploy:
needs: build

Use needs: to control job order.

W7 hogeschool
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Self-Hosted Runners

runs-on: [self-hosted, gpu]

Use your own machines for:
* GPU access

* Private data or networks

* Custom dependencies

* Cl on air-gapped systems

Register runners in repo or organization settings.

W hogeschool
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Steps: The Core Building Blocks

 Steps run inside jobs, in order
e Share the same environment (files, variables)

e Can be:
e Shell commands
* GitHub Actions

steps:
- run: pip install -r requirements.txt
- run: python train.py

W hogeschool
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Using Reusable Actions

Use community-built actions from the GitHub Marketplace:

- uses: actions/checkout@v4
- uses: actions/setup-python@v5
with:
python-version: '3.10°

Other useful actions:
e actions/cache
* actions/upload-artifact
» docker/build-push-action
* aws-actions/configure-aws-credentials

— Browse: github.com/marketplace?type=actions
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Actions

Automate your workflow from idea to production

Filter: All

0 ©

0O ©

'
'

v By: All creators ~ Sort: Popularity -

TruffleHog 0SS & Action

Find and verify leaked credentials in your source code

yq - portable yaml processor Action

create, read, update, delete, merge, validate and do more with yaml

Gosec Security Checker Action

Runs the gosec security checker

OpenCommit — improve commits with Al...  Action

Replaces lame commit messages with meaningful Al-generated
messages when you push to remote

SSH Remote Commands Action

Executing remote ssh commands

W hogeschool
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Metrics embed Action
An infographics generator with 40+ plugins and 300+ options to display
stats about your GitHub account

Super-Linter 2 Action
Super-linter is a ready-to-run collection of linters and code analyzers, to
help validate your source code

Rebuild Armbian and Kernel Action
Support Amlogic, Rockchip and Allwinner boxes

Checkout & Action

Checkout a Git repository at a particular version

GitHub Pages action Action

GitHub Actions for GitHub Pages & Deploy static files and publish your
site easily. Static-Site-Generators-friendly
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Environment Variables

Use env: to define variables:

jobs:
deploy:
env:
ENVIRONMENT: production

Available to all steps in the job:
- run: echo "Deploying to SENVIRONMENT"

I Environment variables are not secure by default

W hogeschool
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GitHub Secrets

For credentials and tokens, use GitHub Secrets:
1. Go to Settings - Secrets - Actions
2. Add AWS_ACCESS KEY_ID, etc.

In workflow:

env.
AWS_ACCESS_KEY_ID: ${{ secrets.AWS_ACCESS KEY D }}

—> Never commit credentials in code!
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Example: Upload to S3 with Secrets

- name: Upload to S3
run: aws s3 cp model.pkl s3://my-ml-models/

env:
AWS_ ACCESS_KEY_ID: S{{ secrets. AWS_ ACCESS KEY_ID }}
AWS_SECRET_ACCESS_KEY: ${{ secrets.AWS SECRET ACCESS KEY

I3

* Keeps credentials safe
* Works on any runner
 Essential for ML workflows that deploy or store artifacts



VLAIO TETRA MLOps4ECM

18

(]

vives EE=]
Treat ML Like Engineering

* CI/CD is your first step toward ML engineering
* It brings structure, speed, and reliability to fast-moving ML workflows

* From experiment to automation: ML needs DevOps too
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Data Pipelines and Orchestration

FrameWOrkS
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Why We Need Orchestration

* ML systems aren’t just about models,
they involve data, logic, dependencies, and time.

* Scripts break when pipelines become:
* Multi-step, data-triggered
* Long-running, failure-prone

* Orchestration frameworks help you
build reliable, maintainable workflows.

W hogeschool
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Beyond CI/CD: A Different Kind of Automation

 CI/CD tools react to code changes (e.g. Git push, PR).
e Orchestration tools react to data or time (e.g. new files, daily run).

* CI/CD is great for:
* Testing code
* Building containers
* Deploying services
* Orchestration is better for:
e Scheduling workflows

* Managing task dependencies
* Handling retries, monitoring, and lineage
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DAGs: The Backbone of Orchestration

* Orchestrators define workflows as DAGs — Directed Acyclic Graphs.
e Each task is a node, dependencies are edges.

* DAGs:
* Ensure correct execution order ®
* Support parallelism
* Enable resumable, observable workflows
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Convert Euros
to U.S. Dollars

Summarize
by Country

Convert
British Pounds

Final Global
Report

Summarize

Load Data from
Sales Database

Separate
Data by

Convert
Canadian Dollars

Final U.S.-Only
Report

Summarize

Convert
Mexican Pesos
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Tool Spotlight: Apache Airflow
* . Proven and widely adopted

» [ Strong scheduling and monitoring
* /. Rigid and boilerplate-heavy

@dag(schedule_interval="@daily")
def pipeline():
clean_data() >> train_model()
>> evaluate_model()

Apache

Airflow

Great for: structured, schedule-driven
pipelines in stable environments
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Tool Spotlight: Dagster

* | Asset-centric approach

e | Strong modularity, type safety, and lineage
* /. Some newer concepts and tooling curve

@asset
def trained _model(cleaned_data): ...

@ dagster

Great for: modern ML projects with
evolving assets and structure
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Tool Spotlight: Prefect

* . Easyto adopt, very Pythonic

* < Supports dynamic, runtime-generated DAGs
* /. Less opinionated; cloud features gated

@flow

def my_pipeline():
model = train_model(clean_data())
evaluate(model)

¢ PREFECT

Great for: flexible research workflows, rapid iteration
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Who Does What: CI/CD vs. Orchestration

Cl/CD Tools Orchestration Tools

Test code v X
Deploy services v X
Ingest new data X v
Run nightly training X ~
Retry failed steps 1 Limited . Robust
Monitor pipelines /1. Basic logs L Full Ul
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You've Reached the End of

the Pipeline
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Final Thoughts: MLOps at Scale

* ML in production means software, data and automation.
* You don’t need all tools at once — start small and scale up.

* Choose the tools that match your
team size, data complexity, and maturity.

* Containers, object storage, ClI/CD and data pipelines
are the foundation of robust ML systems.
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Thank You & Good Luck!

® You’'ve reached the end of the workshop — well done!

%~ Good luck with your future machine learning adventures!
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