

Edge AI Deployment: Optimizing and Scaling AI Models on Devices

Alexander D'hoore

Welcome to Day 3: Edge AI Deployment

- Welcome back to the workshop!
- Today is **Day 3**, and we'll focus on:

Deploying AI models on edge devices.

Course Overview

Course Goals

By the end of this course, you'll be able to:

- Understand the opportunities of edge AI.
- Select appropriate edge AI hardware.
- Optimize models through **ONNX** file format.
- Deploy using ONNX Runtime and TensorRT.
- Advanced optimization with Model Optimizer.

Table of Contents (1/2)

1. Introduction to Edge AI

• Why we move intelligence from cloud to device

2. Overview of Edge Hardware and Accelerators

• Choosing CPUs, GPUs, NPUs, and microcontrollers

3. Model Optimization Techniques

• Quantization, pruning, distillation, and more

4. Exporting Models with the ONNX Format

• Framework interoperability and serialization

Table of Contents (2/2)

5. Efficient Inference with ONNX Runtime

- Deployment, backend tuning, and graph optimization
- 6. High-Performance Deployment with TensorRT
 - Engine building, precision control, memory tuning
- 7. Advanced Techniques with Model Optimizer
 - QAT, automatic pruning and sparse networks

Introduction to Edge AI

What is Edge AI?

- Machine learning inference on physical devices
- Close to the source of data: sensors, machines, vehicles
- Operates outside traditional data centers
- Limited compute, memory and storage
- Bandwidth may be unreliable or expensive
- **Battery-powered** \rightarrow energy efficiency

How Edge Al Works

- Models are trained on cloud or workstation
- Then optimized and **deployed on-device**
- Inference happens locally, not in the cloud
- Using sensors:
 - Cameras,
 - microphones,
 - accelerometers, etc.

On-Device Training: Rare but Possible

- Some edge devices allow fine-tuning or adaptation
 - E.g. personalize to local environment or user
- Limited by:
 - CPU/GPU constraints
 - Power and storage
- Inference remains the **dominant use case**

Where Edge Al Is Used

- Industrial automation: defect detection, predictive maintenance
- Automotive systems: real-time navigation, safety
- Healthcare devices: diagnostics, wearables
- Remote infrastructure: monitoring, control
- \rightarrow Common thread: **continuous local data**
 - + Need for **fast, autonomous decisions**

Latency: Real-Time Reactions

- Some systems must respond in milliseconds
 - Example: robotics, drones, autonomous vehicles
- Cloud inference: 50–100ms (best case)
- Network delay is unpredictable
- → Edge AI offers **microsecond-level latency**, enables fast control loops

Bandwidth: Local Insights, Not Raw Streams

- Edge devices often generate high-volume data
 - Cameras, microphones, sensors
- Cloud upload is:
 - Too slow
 - Too costly
 - Sometimes impossible (e.g. rural, satellite)

- \rightarrow Edge AI extracts and sends **only key results**
- \rightarrow Optional: upload **rare events** for retraining

Reliability: When the Network Fails

- Many environments have unstable connectivity
 - Factories, vehicles, ships, rural areas
- Cloud-only inference = single point of failure
- → Edge AI continues working **offline**
- → Some systems use **fallback**: edge + cloud

Not Found

The resource requested could not be found on this server!

Privacy and Compliance

- Local inference keeps data on the device
- Reduces:
 - Risk of leaks
 - Need for cloud access control
 - Legal exposure (GDPR, HIPAA, etc.)
- Example:
 - Smart camera \rightarrow detects activity, not record video
- Sometimes a legal requirement
- Can be a competitive advantage

Cost: Economics of Edge Al

• Cloud inference incurs **ongoing costs**:

- Compute, storage, and network usage
- Costs scale with usage (per request or per byte)

• Edge AI shifts to fixed hardware cost

- One-time investment
- Predictable long-term budgeting
- Scalable intelligence without scalable bills

Power Efficiency and Battery Constraints

- Cloud-based inference = constant transmission = high energy
- Edge inference = **no round trip**, less communication overhead
- Edge AI hardware (ARM, NPU):
 - Lower energy consumption
 - Better thermal behavior
- Combined with:
 - Low-power wireless (LoRa, NB-IoT, BLE)
 - Smart sampling or event-based communication

Strategic Deployment: Cloud vs Edge

• Cloud inference:

- Centralized, scalable, fast iteration
- Risk of vendor lock-in and rising costs

• Edge inference:

- Local control, privacy, and reliability
- Greater autonomy and offline capability

• On-premise:

- Local server in same facility
- Useful in hospitals, factories, defense

When Edge AI is **Not** the Right Fit

- Edge AI is powerful but not universal
- Avoid for:
 - Large-scale language models
 - Collaborative inference
 - Frequent model updates
- → Choose edge only when **justified** by latency, privacy, bandwidth, or autonomy

Advantages of Edge Al

- Latency: Respond in real time
- Sandwidth: Reduce data transmission
- 🗹 Resilience: Survive network failures
- 🗹 Privacy: Keep data local
- Cost: Lower and more predictable
- Energy: Enable battery-powered ML
- 🗹 Flexibility: Cloud, edge, or hybrid

→ Edge AI = smarter, faster inference in the real world

Overview of Edge Hardware and Accelerators

Introduction to Edge Hardware

- What kind of hardware will run your model?
- This chapter explores edge AI hardware:
 - From microcontrollers to GPUs and NPUs
 - Matching compute to application needs
- Essential for selecting or designing reliable, efficient edge systems.

Industrial Priorities in Hardware Choice

- Industrial constraints ≠ Consumer constraints
- Key priorities:
 - Long-term availability (10+ years)
 - Pre-certified modules for CE, FCC, UL...
 - Durability: temperature, vibration, dust...
 - Sourcing risk and supply chain stability
- Even perfect boards can fail, if they disappear in 3 years

Certification and Lifecycle Management

Regulatory compliance is essential

- CE, FCC, UL often legally required
- Off-the-shelf modules may come pre-certified
- Lifecycle expectations:
 - Deployment in 2027 \rightarrow still repairable in 2037
 - Hardware updates = expensive redesigns

MLOps4ECM

Environmental Durability and Sourcing Risk

- Real deployments ≠ office conditions
 - Outdoors, in vehicles, factories, etc.
- Industrial environments need:
 - Wide temp range, rugged connectors, sealed enclosures
- Sourcing matters:
 - Can you buy 10,000 units next year?
 - Will the part still exist?

Tooling, SDKs, and Ecosystem Maturity

- Good hardware needs great software
- Toolchains + docs often make or break a project
- Mature ecosystems = smooth development
 - Good options: NVIDIA Jetson, Intel OpenVINO
- Cheap boards with bad SDKs = hidden costs

CPU, GPU, NPU: What's What?

- CPU: Flexible, handles OS, control logic
 - Good for setup, orchestration, signal processing
- GPU: Highly parallel compute device
 - Great for matrix operations, Al inference
- NPU: Dedicated neural network accelerator
 - Fast, efficient, application-specific (int8/fp16)

Performance Specs Can Mislead

- A board might advertise "10 TOPS"
 → That means 10 trillion operations per second
- But raw numbers don't tell the full story:
 - Are all your model's layers actually supported?
 - Is the **memory bandwidth** fast enough to keep up?
- Real-world performance depends on:
 - Operator compatibility, toolchain quality
 - How well your model maps to the hardware

Matching Workload to Hardware

- Choose hardware based on **model type and input data**:
- Time series \rightarrow low compute
- Audio \rightarrow medium compute
- Vision CNN \rightarrow high compute
- Video / Transformers \rightarrow very high compute

Time Series and TinyML

- Low sampling rate, low data volume
- Models: classifiers, anomaly detectors
- Typical hardware:
 - MCUs with KBs of RAM
 - TinyML toolchains
- Use cases:
 - Gesture recognition, vibration analysis

Audio: More Demanding

- Higher sampling rates (16–48 kHz)
- Models:
 - Keyword spotting, speaker ID
 - Environmental audio classification
- Typical hardware:
 - Optimized MCUs or entry-level NPUs
 - Full speech recognition
 → Linux-class CPU + NPU

Image/Video: Matrix-Heavy

• Image classification, detection, segmentation

- Object tracking, pose estimation
- Smart cameras, industrial vision
- Inputs: 224×224 RGB \rightarrow 50k+ pixels
- Requires:
 - Dedicated NPUs
 - Embedded GPUs

Transformers on Edge?

• High resource requirements:

- RAM, memory access, attention support
- Models:
 - Whisper, ViT, LLaMA
- Most platforms can't run them efficiently
 - Some support emerging (e.g. Qualcomm, Hailo)
 - Often needs desktop GPU

Let's Look at Some Hardware

Microcontrollers for TinyML

- Microcontrollers (MCUs) are the **smallest and most common** compute platforms in the world.
- Can be used for:
 - Industrial monitoring
 - Vibration analysis
 - Anomaly detection
- Powering the rise of **TinyML**: ML models on KB–MB memory devices

LOps4ECM

MCU Example: STM32 Series

- Widely used in industry
 - Cortex-M0 (simple)
 - **STM32H7** (high-end with FP support)
 - STM32N6: NPU for real-time vision

→ STM32N6 runs **YOLOv8 at 30 FPS** within a battery-friendly package

 \rightarrow Previously impossible on microcontrollers

Embedded Linux SoCs (With or Without NPU)

- When microcontrollers aren't enough:
 - Input is richer
 - Models are bigger
 - You need Linux
- Embedded Linux system-on-chips offer:
 - MPUs with 100s of MBs to GBs of RAM
 - Advanced I/O
 - Real-time AI on-device

VLAIO TETRA MLOps4ECM

What Linux SoCs Enable

- Enable you to run full Linux operating system
- Support complex workloads such as:
 - Robotics with real-time control loops
 - Computer vision for detection or tracking
 - Audio processing like speech commands
 - Human-machine interfaces (displays)
- → Think: smart cameras, inspection robots, AI-powered control units

Linux Chips with NPUs

- Many modern SoCs come with dedicated NPUs
- Offload inference from CPU
- Key examples:
 - NXP i.MX 8M Plus: 2.3 TOPS, great docs
 - TI TDA4VM: 8 TOPS, real-time AI
 - Rockchip RK3588: octa-core CPU + 6 TOPS
 - STM32MP25: 1.35 TOPS vision chip

MLOps4ECN

Single-Board Computers and Modules

- Not every product starts from scratch
- Use single-board computers (SBCs)
- Or compute modules (SOMs)
- Pre-integrated hardware
- Speeds up development and prototyping

SBCs: Fast, Flexible Development

- Full computers on one PCB
- Run Linux out of the box
- Include HDMI, USB, Ethernet...
- Examples:
 - Radxa ROCK 5 (Rockchip + 8K + AI)
 - Toradex, SolidRun, Advantech (industrial)
 - Raspberry Pi 5 (less Al, more community)

Modules: For Embedded Products

- Compute modules plug into carrier boards
 - System-on-module (SOM), computer-on-module (COM) ...
- Split high-frequency logic (module) from application-specific I/O (carrier)
- **Custom I/O** on the carrier board:
 - Motor control
 - Camera input
 - Industrial buses

Add-On Module Examples

- Toradex Aquila: NXP/TI SoCs, long-term support
- SolidRun SoMs: modular i.MX8 boards
- Raspberry Pi Compute Module 5
- → Ideal when you need integration + certification + lifecycle

The NVIDIA Jetson Series

- Jetson = Embedded Al Powerhouse
 - Multi-core ARM CPUs for general-purpose compute
 - Embedded NVIDIA GPUs for high-throughput parallel processing
 - Dedicated AI accelerators (DLA) for efficient deep learning inference
- Built for demanding edge use cases:
 - Autonomous robotics
 - Multi-camera video analytics
 - Real-time vision, planning, decision-making

Jetson Form Factor and Integration

- Jetson = compute module, sits on carrier board
- Dev kits = reference carrier + module
- Carrier boards:
 - Use 3rd-party carriers (Connect Tech, Forecr)
 - Build your own custom carrier

Jetson Orin Lineup

- Jetson Orin Nano:
 - Up to **67 TOPS,** Power: 7–25W
- Jetson Orin NX:
 - Up to **157 TOPS,** Power: 10–40W
- Jetson AGX Orin:
 - Up to **275 TOPS,** Power: 15–60W
- → Choose based on model size and real-time needs

Jetson = Hardware + Software

- Every Jetson runs **JetPack**:
 - CUDA
 - cuDNN
 - TensorRT
 - DeepStream
- 🗹 Datacenter tools
- Optimized for **embedded**
- **V** Full **PyTorch** support

External AI Accelerators (Hailo)

Not every system has a good GPU/NPU

• Solution: External AI accelerators

- PCIe or M.2 form factor
- Plug into existing systems
- Add neural inference without a redesign
- → A leading example: Hailo modules

Hailo Overview

- Hailo-8:
 - Up to 26 TOPS
 - Power: ~2.5W
 - PCle / M.2
- Hailo-8L:
 - Up to **13 TOPS**
 - Lower power
- Hailo-15:
 - Combines ARM + NPU
 - Smart vision chip

Hailo in the Edge AI Ecosystem

- Compact, passively cooled NPU
- Strong industrial adoption (Kontron, Advantech, Toradex...)
- 🔽 Raspberry Pi Al Kit includes Hailo-8L
- Excellent SDK: supports ONNX
- 🔽 Powerful Hailo Dataflow Compiler
- → Compact, powerful, and easy to integrate

FPGAs for Deterministic Al

- Most accelerators = fixed-function (CPU, GPU, NPU)
- FPGAs = reconfigurable logic
 - Build custom hardware per application
- Ideal for:
 - Real-time signal processing
 - Deterministic vision pipelines
- → Great for edge AI with hard real-time requirements

Popular FPGA Platforms

- AMD (Xilinx) and Intel (Altera) dominate
- Examples:
 - AMD Kria K26:
 - Zynq UltraScale+ MPSoC
 - ARM + FPGA fabric
 - Target: embedded vision
 - Intel Agilex 5:
 - ARM + DSP + AI blocks
 - Mid-range automation & robotics

VLAIO TETRA MLOps4ECM

Intel-Compatible Edge Devices

• Not all edge AI runs on ARM

→ Example: Intel N100 (6W TDP, solid performance)

- 🕨 🔽 Full Linux/Windows
- Mainstream toolchains
- Off-the-shelf I/O and enclosures
- Wide industrial vendor support
- 🗙 Higher power usage than ARM

Intel OpenVINO for Al Inference

• Intel's **OpenVINO toolkit**:

- Optimizes models for Intel CPUs, GPUs
- Supports: ONNX, PyTorch, TensorFlow

• Excellent library for:

- Visual inspection
- Predictive maintenance
- Anomaly detection
- → Avoids need for external AI chips in many workloads

Industrial PCs (IPCs)

- When you need more power:
 - Go from embedded boards \rightarrow Industrial PCs
- IPCs = PC hardware in **rugged form**
 - Dust-proof, fanless, vibration-resistant
 - DIN rail mountable
 - Real-time fieldbus support

Industrial PC Capabilities

- CPUs: Intel/AMD (high single/multi-core perf)
- OS: Linux or Windows
- Al Acceleration: high-end GPUs
 - NVIDIA RTX cards (for vision or transformers)
- \rightarrow In factories, inspection, machine control

PLCs with AI Capabilities

• PLCs = heart of **real-time automation**

- Deterministic timing, safety interlocks
- Often programmed in Structured Text
- New hybrid architectures:
 - RTOS + Linux/Windows on same device
 - Combines control + inference on one box
- Vendors: Siemens, Beckhoff, Schneider...

Al on the PLC?

1. On-PLC Inference

- Fast, deterministic, model size limited
- 2. Nearby Module/IPC
 - More powerful, adds latency
- 3. Cloud or Central Server
 - Most complex models, least real-time
- → Choose based on control loop timing vs model complexity

Edge Hardware Landscape

- MCUs: ultra-low power, TinyML
- SoCs: balance of Linux and AI
- SBCs/Modules: fast time to market
- Jetson: high-performance embedded AI
- Hailo: external acceleration, flexible
- FPGAs: custom logic, deterministic control
- Intel x86: mature, flexible platforms
- IPCs: rugged, GPU-ready edge systems
- PLCs: real-time control with AI support

Model Optimization Techniques

Why Optimize Models for the Edge?

- Most models are trained on server hardware
 - Large GPUs, plenty of RAM, fast I/O
- But edge devices face real limits:
 - Small memory footprint
 - Slow CPU/GPU
 - Hard latency deadlines

Reality Check: Inference-Time Memory

- Model weights are usually stored in FP32
 - 4 bytes per parameter
 - 1M parameters = **4 MB** weight file
- But inference also needs:
 - Activation maps (layer outputs)
 - Temporary buffers, which are much larger
- Vision models often use **5–10× more RAM** at inference time

ResNet-50: A Classic Heavyweight

- ~25 million parameters \rightarrow ~100 MB (FP32)
- Inference-time memory: hundreds of MB
- Fine on desktop GPUs

• On Jetson Orin Nano (4 GB RAM):

- GPU memory on Jetson is **shared** with operating system
- Reaching limits when combined with camera input or other tasks

YOLOv5s: Light, but Still Demanding

- ~7.5 million parameters (~30 MB in FP32)
- Real-time inference on:
 - Jetson Orin: 🔽 OK
 - Raspberry Pi 4: A CPU-only > 500 ms/frame
- Needs acceleration for real-time performance

MobileNetV2: Designed for Efficiency

• ~3.5 million parameters → ~14 MB

• On Radxa Rock 3:

- Automotive-grade single-board computer
- INT8 quantized model runs in real time (60Hz)
- Inference time cut by **>50%** with quantization

→ Smaller model, smarter design = edge performance

Who's Doing the Optimization?

1. Training Frameworks

- Where models are built and trained
- Usually used in the cloud or on dev machines
- PyTorch:
 - Most widely used framework today
 - Pythonic, flexible, **dominant** in research and prototyping
- TensorFlow / Keras:
 - Still widely adopted, especially in production ecially mobile
 - Less popular in current research circles
- \rightarrow These are not deployment-optimized, but they're the starting point

2. General-Purpose Runtimes (1/2)

• Cross-platform engines, not hardware specific

• ONNX Runtime:

- Cross-platform, high-performance
- Supports CPU, GPU, and NPU backends
- Automatically applies quantization, operator fusion, graph rewrites
- TensorFlow Lite (TFLite):
 - Lightweight, mature inference engine from TensorFlow
 - Targets mobile, embedded Linux, and microcontrollers (Cortex-M)
 - Includes quantization tooling and runtime acceleration

2. General-Purpose Runtimes (2/2)

• TorchScript:

- PyTorch's native model export format
- Used for deployment in mobile apps and C++ environments
- Easier to use than ONNX for simple deployment within **PyTorch ecosystem**

• ExecuTorch:

- New runtime from PyTorch team for edge devices
- Supports Android, iOS, and some microcontrollers
- Leverages PyTorch 2 export tools
- Promising, but **not yet mature** or widely used

3. Vendor-Specific SDKs and Toolchains (1/2)

- Provide maximum performance for specific hardware
- TensorRT (NVIDIA):
 - Converts ONNX models into GPU-optimized engines
 - Supports FP16, INT8, layer fusion, memory tuning
- OpenVINO (Intel):
 - Targets CPUs, iGPUs, and FPGAs
 - Includes quantization, pruning-aware tools, strong runtime
- TI EdgeAI SDK:
 - For TI SoCs (e.g. TDA series)
 - Hardware-aware quantization and model compilation

3. Vendor-Specific SDKs and Toolchains (2/2)

• STM32Cube.AI:

- Compiles models to **efficient C code** for STM32 MCUs
- Applies static memory allocation and INT8 quantization
- Hailo SDK:
 - For Hailo-8 external NPUs, supports ONNX models

• **RKNPU Toolchain**:

- Targets Rockchip SoCs with NPUs, optimized execution graphs
- and many more...

What Kinds of Optimizations Are There?

Numeric Precision and Data Types

- Most models use 32-bit floating point (FP32)
- Edge devices benefit from smaller formats:
 - FP16: Half-size, faster on GPUs
 - INT8: 1 byte per value, major speed gains
 - BF16 (Brain Float 16): TPUs, Intel CPUs
 - INT4: Extreme compression

What is Quantization?

- Converts weights/activations to lower-precision integers
 - Saves memory (4× smaller models)
 - Speeds up inference (2 to 4× faster)
 - Enables deployment to constrained devices
- Most common: INT8 quantization
 - Native support on NPUs, CPUs, and MCUs

Post-Training Quantization (PTQ)

- Apply quantization **after training** no retraining needed
- Converts FP32 \rightarrow INT8
 - Uses scaling factors to map float to int
 - Keeps model structure the same
- Accuracy drops possible, but often small
- \rightarrow Fast and easy way to reduce model size

75

PTQ: Dynamic vs Static Quantization

• Dynamic Quantization:

- Quantize weights only
- Activations quantized on-the-fly
- Works well for LSTMs, transformers

• Static Quantization:

- Quantize both weights and activations
- Requires calibration dataset
- Better accuracy for vision models
- → Tradeoff: simplicity vs performance

VLAIO TETRA MLOps4ECM

Quantization Formula & Strategies

float_value = scale × (int_value - zero_point)

- **Scale** = adjusts float to int range
- Zero-point = optional offset (for asymmetric quantization)
- **Symmetric quantization** = zero-point = 0 (simpler, faster)
- **Per-tensor quantization**: 1 scale/zero-point per layer
- Per-channel quantization: 1 scale per output channel
 - More accurate, especially for CONV layers

PTQ Support in Frameworks

- PyTorch:
 - torch.quantization supports dynamic & static PTQ
- ONNX Runtime:
 - Includes quantization toolkit
- TensorRT:
 - Uses calibration steps to compute ranges
- OpenVINO:
 - NNCF toolkit with strong calibration support

 \rightarrow All major runtimes support PTQ workflows

78

Quantization-Aware Training (QAT)

• Simulates quantization during training

- Inserts fake quantization operators
- Model learns to handle rounding noise
- Gradients still use FP32
- Final model runs in INT8 with better accuracy
- \rightarrow Ideal for sensitive models or tight accuracy budgets

QAT in Practice

- **PyTorch**: Use prepare_qat() \rightarrow train \rightarrow convert()
- **ONNX Runtime**: Can run QAT-trained models (from PyTorch)
- **TensorRT**: Supported with NVIDIA Model Optimizer library
- **OpenVINO**: Integrated with NNCF: simulate quantization + export
- \rightarrow Adds complexity, but enables high-accuracy INT8 inference
- \rightarrow Use QAT when PTQ accuracy drop is unacceptable

Pruning: Slimming Down the Network

- Pruning = removing parts of a model
- Many weights/activations are not important
- Goal: **smaller, faster models** with minimal accuracy loss

82

Unstructured vs Structured Pruning

• Unstructured:

- Removes weights near zero
- Model shape unchanged
- 👍 No speedup on most hardware
- Structured:
 - Removes filters, channels, or blocks
 - Model becomes smaller and faster
 - Greater risk of accuracy drop

VLAIO TETRA MLOps4ECM

Structured Pruning

84

Unstructured Pruning

Special Case: 2:4 Sparsity Pruning

- Format where 2 of every 4 weights = 0
- Supported by modern NVIDIA GPUs, some other NPUs
- Benefits:
 - Compression + real runtime acceleration
 - More structured than unstructured pruning
- → Requires hardware + compiler support

85

VLAIO TETRA MLOps4ECM

86

Pruning in Practice

- **PyTorch**: torch.nn.utils.prune for structured/unstructured pruning
- TensorRT: Supports pruning and 2:4 sparsity with Model Optimizer
- OpenVINO: Pruning-aware training via NNCF
- \rightarrow Toolchain support **varies** by target hardware

Graph-Level Optimizations

- Deployment tools transform the model graph for performance
 - Graph = operations + data dependencies
- Optimizations reduce memory use, kernel overhead, and latency
- → All done **automatically** at export or runtime
- You don't have to apply these manually

Operator Fusion

- Combines multiple operations into one:
 - Example: Conv + BatchNorm + ReLU
- Benefits:
 - Fewer memory accesses
 - Less kernel launch overhead

More Graph Optimizations

- Constant folding: pre-compute static operators
- **Dead code elimination**: remove unused branches
- **Transpose folding**: reduce layout changes (e.g. NHWC ↔ NCHW)
- Memory reuse: reuse intermediate buffers to save RAM
- Layout optimization: align memory layout with hardware
- **Static scheduling**: pre-plan execution order + buffers
- \rightarrow Often invisible but powerful

Which Tools Apply These?

• ONNX Runtime:

• Graph optimizations enabled by default

• TensorRT:

- Aggressive fusion + memory planning
- Uses **benchmarking** to find optimal graph
- OpenVINO:
 - Tailored fusion passes for Intel CPUs/GPUs

→ Export quality + runtime = **huge difference** in performance

Knowledge Distillation: Core Idea

- Teach a **small model (student)** using predictions from a **larger model (teacher)**
- Student learns correct labels, and also:
 - Teacher's confidence distribution
 - Output behavior on ambiguous inputs
- \rightarrow Improves student accuracy

Synthetic Data: What and Why

- Synthetic data = artificially generated training data
 - Not an optimization technique, strictly speaking
- Data comes from:
 - Simulators (Unity, Isaac Sim, CARLA)
 - 3D renderers (Blender)
 - Generative models (Stable Diffusion)
 - Large language models (GPT, Llama)
- \rightarrow Can recover accuracy lost to optimization

MLOps4ECM

Synthetic Data + Edge AI = Future

• Use **foundation models** to:

- Generate labeled samples ("red pipe on gray background")
- Auto-label unlabeled images or logs
- Small, optimized networks can:
 - Be trained on synthetic datasets
 - Run faster inference in the field
- → Synthetic + distilled + optimized
 = the future of edge AI

Efficient Model Architectures

Lightweight Vision Models

- Lightweight models are **designed for efficiency**
 - Prioritize: smaller size, fewer FLOPs, faster inference
- Z Depthwise-separable convolutions
- Inverted residuals + bottlenecks
- Squeeze-and-excitation blocks

Popular Lightweight Vision Models

- MobileNetV2/V3: 2.5M–3.4M params, fast and widely supported
- EfficientNet-Lite: Great accuracy/size ratio, ONNX-ready
- YOLO-Tiny: Real-time object detection on CPUs and GPUs
- MobileNet-SSD: Compact detector, OpenVINO ready
- DeepLabv3+ (MobileNet): Lightweight segmentation
- \rightarrow Start here, then optimize further

Models for Time-Based Inputs

- **CNN-1D**: Simple, fast, ideal for low-frequency signals
- Small RNNs (LSTM/GRU): Long memory, efficient inference
- TCNs: Dilated convolutions, good for anomaly detection
- Spectrogram-based CNNs: Transform audio into images
- **CRNNs**: Combine CNN + RNN, good for sound events
- → TCNs + Spectrogram CNNs are **go-to choices** today

Neural Architecture Search (NAS): Worth It?

- NAS = **automated search** for optimal architectures
- Promises better accuracy efficiency trade-offs
- X Requires huge compute (train 100s–1000s of models)
- X Complex, costly, and hard to validate
- Luckily, **MobileNetV3**, **EfficientNet** = NAS-designed
- → For most teams: skip the search, **use existing NAS models**

Optimizing for the Edge

- We've covered the core techniques of edge AI:
 - Quantization (post-training and during)
 - Pruning (structured/sparsity)
 - Knowledge distillation
 - Graph-level optimization
 - Lightweight architectures

→ These aren't academic tricks, they're essential for running AI at the edge

Exporting Models with the ONNX Format

From Training to Inference (ONNX)

- Training frameworks (e.g. PyTorch, TensorFlow):
 - Gradient computation
 - Debugging and visualization
 - Rely on **Python**, which isn't ideal
- These features are ideal for research, not for deployment.
- For real-time inference, we need something **lighter and faster**

Export Format Options

• TorchScript model file

- PyTorch-native, not cross-framework
- Works in C++, mobile apps
- TensorFlow Lite model file
 - Only for TensorFlow Lite (Micro)
 - Optimized for mobile, microcontrollers
- ONNX (Open Neural Network Exchange)
 - Cross-framework standard, widely used
 - Compatible with many inference engines
- \rightarrow We focus on **ONNX** for its flexibility

What Is ONNX?

• Open Neural Network Exchange (ONNX) is:

- A portable file format for machine learning models
- Created by Microsoft and Facebook (2017)
- Widely supported by almost all ML tools

Export models once, run anywhere!

ONNX File Contents

An .onnx file contains:

- The computation graph (layers/operations)
- The learned weights (parameters)
- Input/output specs (shapes, dtypes)
- → Portable, compact, ready for deployment

VLAIO TETRA MLOps4ECM

ONNX vs ONNX Runtime

- **ONNX** = file format (model storage)
- **ONNX Runtime** = inference engine (model execution)
- You can run ONNX in many runtimes:
 - TensorRT
 - OpenVINO
 - And more...

 \rightarrow ONNX is the **file format**, runtimes are the **interpreters**

Exporting PyTorch Models to ONNX

- PyTorch has **built-in support** for exporting to ONNX.
- Use the torch.onnx.export() function.
- Exporting involves:
 - 1. Defining or loading a model
 - 2. Preparing a dummy input
 - 3. Calling the export function with key options

Step 1: Define or Load Your Model

```
class TinyCNN(nn.Module):
  def __init (self):
    super().__init__()
    self.conv = nn.Conv2d(1, 8, 3, 1, 1)
    self.fc = nn.Linear(8 * 28 * 28, 10)
  def forward(self, x):
    x = torch.relu(self.conv(x))
    x = x.view(x.size(0), -1)
    return self.fc(x)
```

```
model = TinyCNN()
model.eval() # Eval mode for ONNX export!
```


Step 2: Prepare Dummy Input

dummy_input = torch.rand(1, 1, 28, 28)

- Required for tracing the **computation graph**
- Must match the input shape expected by the model
- Can be random, the data itself doesn't matter
- \rightarrow Often one sample with batch size 1

Step 3: Export the Model

```
torch.onnx.export(
   model, dummy_input, "tiny_cnn.onnx",
   input_names=["input"], output_names=["output"],
   dynamic_axes={"input": {0: "batch"}, "output": {0: "batch"}},
   opset_version=20,
```

- Creates a .onnx file containing:
 - Graph structure
 - Learned parameters
 - Input/output names

Key Export Options to Know

input_names / output_names

- Assigns names to the input and output nodes of the graph
- dynamic_axes
 - Enables variable **batch sizes** or input lengths
- opset_version
 - Controls which ONNX operators are used
 - PyTorch supports up to **version 20** (as of 2025)

Visualizing with Netron

- Netron: graphical model viewer
 - Opens .onnx files in the browser
 - Great for sanity checks and optimization review
- Lets you:
 - See full computation graph
 - Click to inspect layers and shapes
 - Compare versions side by side
- Visit: https://netron.app/

VLAIO TETRA MLOps4ECM

Efficient Inference with ONNX Runtime

What Is ONNX Runtime?

- A fast, lightweight inference engine for ONNX models
- Developed by Microsoft **open-source** and **cross-platform**
- Designed to run models efficiently on:
 - CPUs, GPUs, embedded devices
- Can be embedded into:
 - Edge applications
 - Mobile apps
 - Server APIs

VLAIO TETRA MLOps4ECM

Why Use ONNX Runtime?

Optimized for inference

- Strips away training overhead
- Focuses on speed, memory efficiency, and portability

• Hardware-agnostic

- Not tied to one vendor or device
- Same model can run on many platforms

- Supports **Python**, but also:
 - C++, Java, C#, JavaScript, and others

119

Execution Providers in ONNX Runtime

- Backends that run parts of the model on **specific hardware**.
- ONNX Runtime delegates calculations to these providers.

Provider	Hardware	Notes
CPU	All platforms	Always works, slower
CUDA	NVIDIA GPUs	Fast, needs CUDA/cuDNN
TensorRT	NVIDIA GPUs	Very fast, startup overhead
OpenVINO	Intel (CPU, GPU)	Optimized for Intel stack
XNNPACK	ARM, x86 CPUs	Good on mobile and edge

Example: Full Inference Pipeline

import onnxruntime as ort
import numpy as np

session = ort.InferenceSession("model.onnx")
input_name = session.get_inputs()[0].name

batch = np.random.rand(2, 1, 28, 28).astype(np.float32)
outputs = session.run(None, {input_name: batch})

```
print("Predictions:", outputs[0])
```


Graph-Level Optimizations

- ONNX Runtime doesn't execute the graph as-is
- It applies automatic graph-level optimizations
 - Fuses patterns (Conv + BN + ReLU)
 - Optimizes reshapes/transposes
 - Precomputes constant subgraphs
 - Removes identity operators
 - And many more...

→ Boosts inference speed and reduces memory use

Quantization in ONNX Runtime

- ONNX Runtime supports **Post-Training Quantization (PTQ)**
 - It does not support Quantization-Aware Training (QAT)
 - Although you can QAT with PyTorch and run with ONNX Runtime
- PTQ converts weights (and activations) to INT8.
- Two main flavors:
 - Z Dynamic Quantization
 - Static Quantization

 \rightarrow Shrinks model size and boosts inference speed with minimal effort.

Dynamic Quantization

- Simplest form of quantization.
- Converts weight tensors from FP32 to INT8.
- Activations stay in FP32 quantized on the fly at runtime.
- No calibration data required.

Dynamic Quantization: Code Example

from onnxruntime.quantization import quantize_dynamic

```
quantize_dynamic(
   model_input="model_processed.onnx",
   model_output="model_dynamic.onnx",
   per_channel=True, # Optional but helpful
```

• per_channel: Improves accuracy, especially for Conv layers.

Static Quantization

- Quantizes both weights and activations.
- Requires a calibration dataset to measure activation ranges.
- More setup, but better performance
- 1. Create a calibration data reader.
- 2. Provide representative input samples.
- 3. Run the quantize_static() function.
- \rightarrow You'll get an INT8 model optimized for runtime memory and speed.

Static Quantization: Code Example

from onnxruntime.quantization **import** quantize_static **from** onnxruntime.quantization **import** CalibrationDataReader

class MyDataReader(CalibrationDataReader):
 def __init__(self): pass
 def get_next(self): return next(self.data, None)

```
quantize_static(
   model_input="model_processed.onnx",
   model_output="model_static.onnx",
   calibration_data_reader=MyDataReader(),
   per_channel=True)
```


Recap: Dynamic vs Static

Dynamic Quantization

- 🗹 Easiest to apply
- 🔽 No calibration needed
- X Less effective on CNNs

Static Quantization

- Sest performance on edge hardware
- **V** Fully INT8 model
- X Needs calibration data

Float16: A GPU-Friendly Optimization

- Not all models run on ARM or MCUs
- On **GPUs**, float16 (FP16) is a great middle ground:
 - 🗹 Faster than FP32
 - Safer than INT8
 - 🔽 No retraining or calibration needed

\rightarrow Use FP16 when deploying on Jetson, industrial PCs or GPU servers

129

Converting to Float16 in ONNX

import onnx
from onnxconverter_common import float16

model = onnx.load("model_fp32.onnx")
model_fp16 = float16.convert_float_to_float16(model)
onnx.save(model_fp16, "model_fp16.onnx")

• Converted model runs faster on GPU, with half the memory.

ONNX Runtime Pipeline

You now know how to:

- Z Export models from **PyTorch** to **ONNX**
- Solution Optimize graphs at runtime
- Apply dynamic and static **quantization**
- Convert models to float16
- 🖻 🔽 Run inference on real hardware

High-Performance Deployment with TensorRT

What Is TensorRT?

- **TensorRT** is NVIDIA's high-performance inference engine.
- It compiles trained models into optimized GPU executables.
- Works with models exported to **ONNX** format.
- Supports a wide range of NVIDIA devices:
 - Desktop RTX, data center GPUs, Jetson.

What TensorRT Does

- Runs models faster than PyTorch/TF/ONNX Runtime.
- Uses graph compilation, not layer-by-layer interpretation.
- Converts a model into a static inference engine
- Produces hardware-specific binaries for **maximum speed**.
- Ideal for production-grade deployments on NVIDIA GPUs.

Graph Compilation: The Secret Sauce

- Compilation occurs once, when building the engine.
- Process:
 - 1. Parse the model graph
 - 2. Optimize the graph structure
 - 3. Benchmark tactics per layer
 - 4. Plan memory, serialize engine
- \rightarrow Inference becomes fast, low-latency, and efficient.

Step 1: Graph Parsing

- ONNX model is parsed into a DAG (directed acyclic graph).
- Validates operator support, shapes, and connectivity.
- Unsupported operators cause build failure.
- Most common operators from PyTorch/TF are supported.
- \rightarrow Optional: add custom plugins for unsupported layers.

Step 2: Graph-Level Optimization

- TensorRT applies static graph rewrites:
 - **Operator fusion** (e.g. Conv + ReLU)
 - Constant folding (precompute static operators)
 - Dead node elimination
 - **Precision calibration** for FP16/INT8

 \rightarrow Reduces kernel count, memory usage, and latency.

Step 3: Tactic Selection

- For each op, TensorRT tries many GPU kernels (tactics).
 - A single layer (e.g. Conv2D) may have 30+ kernel variants.
- Benchmarks tactics to find the **fastest one**.
- Based on:
 - Input shapes
 - GPU architecture
 - Precision settings

→ This makes build time longer, but inference **blazing fast**.

Step 4: Memory Planning & Serialization

- Allocates memory for:
 - Inputs and outputs
 - Intermediate tensors
- Uses smart reuse to reduce peak memory.
- Produces a **serialized engine file**:
 - Loadable without recompilation
- \rightarrow Ready for production deployment

Building and Running TensorRT Engines

- After exporting a model to ONNX, the next step is to **build a TensorRT engine**.
- Steps:
 - 1. Load the ONNX model
 - 2. Compile it into an engine
 - 3. Run inference using GPU memory

\rightarrow All done in Python using **TensorRT + PyCUDA**.

Step 1: Load the ONNX Model

```
logger = trt.Logger(trt.Logger.INFO)
builder = trt.Builder(logger)
flags = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
network = builder.create_network(flags)
parser = trt.OnnxParser(network, logger)
```

with open("model.onnx", "rb") as f:
 if not parser.parse(f.read()):
 raise RuntimeError("Failed to parse ONNX")

141

Step 2: Build the Engine

config = builder.create_builder_config()
config.max_workspace_size = 1 << 30 # 1 GB</pre>

if builder.platform_has_fast_fp16: config.set_flag(trt.BuilderFlag.FP16)

engine = builder.build_engine(network, config)

• Output: GPU-optimized inference engine

Step 3: Inference with the Engine

context = engine.create_execution_context()
d_input = cuda.mem_alloc(input_data.nbytes)
d_output = cuda.mem_alloc(output_data.nbytes)

cuda.memcpy_htod(d_input, input_data)
context.execute_v2([int(d_input), int(d_output)])
cuda.memcpy_dtoh(output_data, d_output)

• Note: manual memory transfers to/from GPU

Serializing Engines

```
engine_bytes = engine.serialize()
with open("model.engine", "wb") as f:
f.write(engine_bytes)
```

- Saves fully optimized engine to disk
- Avoids rebuild time during app startup
- \rightarrow Required for fast startup in production.

Deserializing Engines

runtime = trt.Runtime(trt.Logger(trt.Logger.INFO))
with open("model.engine", "rb") as f:
 engine = runtime.deserialize_cuda_engine(f.read())
context = engine.create_execution_context()

- Load precompiled engine no ONNX needed
- Works only on compatible GPUs
- \rightarrow Fast and lightweight deployment option.

TensorRT - Lower Precision

- Lower precision = faster inference + smaller models
- FP32: default, precise, slowest
- Section FP16: faster, halves memory, no calibration needed
- INT8: fastest, needs quantization metadata
- **FP8**: experimental, Hopper GPUs only
- \rightarrow Reducing bit width improves performance and power efficiency.

Advanced Techniques with Model Optimizer

What Is Model Optimizer?

- ModelOpt = NVIDIA's **Model Optimizer** library for PyTorch
- Works before export, during training
- Optimizes model **before ONNX or TensorRT**
- Focuses on model-level compression, not just runtime optimization.

Where Model Optimizer Fits

PyTorch (ModelOpt: optional) **ONNX** export TensorRT engine build **GPU** inference

149

What Model Optimizer Enables

- Compression-aware **training** and structure refinement.
- Supports techniques like:
 - Quantization-aware training (QAT)
 - Structured pruning
 - 2:4 sparsity patterns
 - Knowledge distillation
 - NAS-assisted architecture search

 \rightarrow All applied directly to your **PyTorch model**.

150

Model Optimizer Pipeline

- 1. Train a model in **PyTorch** (normal LR)
- 2. Apply Model Optimizer:
 - Quantization-aware training
 - Structured pruning or 2:4 sparsity
- 3. Fine-Tune the model (lower LR, less epochs)
- 4. Export to ONNX (as always)
- 5. Build a TensorRT engine (flags: INT8, sparse)
- → Deploy to NVIDIA GPU (desktop, Jetson, server)

Quantization-Aware Training (QAT)

import modelopt.torch.quantization as mtq

```
def calibrate(model):
    model.eval()
    with torch.no_grad():
    for x in calibration_data:
        model(x)
```

model_q = mtq.quantize(model, mtq.INT8_DEFAULT_CFG, calibrate)

- Simulates INT8 using **fake quantization layers**
- Enables immediate INT8 export or QAT fine-tuning

Structured Pruning

```
pruned_model, _ = mtp.prune(
    model=model,
    dummy_input=torch.rand(1, 1, 28, 28),
    constraints={"flops": "50%"},
    mode="fastnas",
    config={
      "data_loader": train_loader,
      "score_func": evaluate_accuracy,
      "
```

- Targets 50% FLOPs reduction
- fastnas = fast search for performant submodels

How Pruning Works

- Traces model with dummy input
- Evaluates subnetwork performance using your score_func
- Physically removes channels (e.g. from conv layers)
- Supports constraints:
 - "flops": Number of computations
 - "params": Number of parameters
- \rightarrow Final model is structurally **leaner**

2:4 Sparsity Pruning

- Enforces a hardware-friendly pattern:
 - For every 4 weights, 2 are zero
- Supported from NVIDIA Ampere (2020)
- Enables sparse Tensor Core kernels
- → Delivers 1.5–2× speedup without model redesign

2:4 Sparsity with Model Optimizer

import modelopt.torch.sparsify as mts

sparse_model = mts.sparsity(model, "sparse_magnitude")

- Modifies weights to match 2:4 pattern
- Can be applied **post-training** or **during training**
- → Sparse kernels = real performance gains

Advanced Features and Frontiers

AutoQuantize (Model Optimizer)

- Chooses best precision per layer: INT8, FP8 or FP16
- New Precision Formats: FP8, INT4
 - Ultra-low memory, high-speed inference
- Runtime Adaptation & LoRA on the Edge
 - Lightweight fine-tuning techniques like LoRA
- And so much more...

You've Reached the Last Layer

From Training to Edge Inference

You now know how to:

- **o** Select and train models for **constrained hardware**
- Sptimize structure and precision for deployment
- Export to ONNX and build efficient inference engines
- Accelerate with **ONNX Runtime** or **NVIDIA TensorRT**
- Ose ModelOpt to squeeze out speed and memory savings

\rightarrow This isn't just theory — it's a full path to **production**

Thank You & Good Luck!

- Keep learning as hardware evolves. 🕎
- Remember: deployment is where real-world ML starts.
- Good luck and build something great! 🚀

