
Edge AI Deployment: Optimizing
and Scaling AI Models on

Devices

Alexander D’hoore

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

2

Welcome to Day 3: Edge AI Deployment

• Welcome back to the workshop!

• Today is Day 3, and we’ll focus on:

Deploying AI models on edge devices.

Course Overview

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

4

Course Goals

By the end of this course, you’ll be able to:

• Understand the opportunities of edge AI.

• Select appropriate edge AI hardware.

• Optimize models through ONNX file format.

• Deploy using ONNX Runtime and TensorRT.

• Advanced optimization with Model Optimizer.

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

5

Table of Contents (1/2)

1. Introduction to Edge AI
• Why we move intelligence from cloud to device

2. Overview of Edge Hardware and Accelerators
• Choosing CPUs, GPUs, NPUs, and microcontrollers

3. Model Optimization Techniques
• Quantization, pruning, distillation, and more

4. Exporting Models with the ONNX Format
• Framework interoperability and serialization

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

6

Table of Contents (2/2)

5. Efficient Inference with ONNX Runtime
• Deployment, backend tuning, and graph optimization

6. High-Performance Deployment with TensorRT
• Engine building, precision control, memory tuning

7. Advanced Techniques with Model Optimizer
• QAT, automatic pruning and sparse networks

Introduction to Edge AI

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

8

What is Edge AI?

• Machine learning inference on physical devices

• Close to the source of data: sensors, machines, vehicles

• Operates outside traditional data centers

• Limited compute, memory and storage

• Bandwidth may be unreliable or expensive

• Battery-powered → energy efficiency

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

9

How Edge AI Works

• Models are trained on cloud or workstation

• Then optimized and deployed on-device

• Inference happens locally, not in the cloud

• Using sensors:
• Cameras,

• microphones,

• accelerometers, etc.

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

10

On-Device Training: Rare but Possible

• Some edge devices allow fine-tuning or adaptation
• E.g. personalize to local environment or user

• Limited by:
• CPU/GPU constraints

• Power and storage

• Inference remains the dominant use case

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

11

Where Edge AI Is Used

• Industrial automation: defect detection, predictive maintenance

• Automotive systems: real-time navigation, safety

• Healthcare devices: diagnostics, wearables

• Remote infrastructure: monitoring, control

→ Common thread: continuous local data

+ Need for fast, autonomous decisions

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

12

Latency: Real-Time Reactions

• Some systems must respond in milliseconds
• Example: robotics, drones, autonomous vehicles

• Cloud inference: 50–100ms (best case)

• Network delay is unpredictable

→ Edge AI offers microsecond-level latency,
enables fast control loops

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

13

Bandwidth: Local Insights, Not Raw Streams

• Edge devices often generate high-volume data
• Cameras, microphones, sensors

• Cloud upload is:
• Too slow

• Too costly

• Sometimes impossible (e.g. rural, satellite)

→ Edge AI extracts and sends only key results

→ Optional: upload rare events for retraining

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

14

Reliability: When the Network Fails

• Many environments have unstable connectivity
• Factories, vehicles, ships, rural areas

• Cloud-only inference = single point of failure

→ Edge AI continues working offline

→ Some systems use fallback: edge + cloud

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

15

Privacy and Compliance

• Local inference keeps data on the device

• Reduces:
• Risk of leaks

• Need for cloud access control

• Legal exposure (GDPR, HIPAA, etc.)

• Example:
• Smart camera → detects activity, not record video

• Sometimes a legal requirement

• Can be a competitive advantage

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

16

Cost: Economics of Edge AI

• Cloud inference incurs ongoing costs:
• Compute, storage, and network usage

• Costs scale with usage (per request or per byte)

• Edge AI shifts to fixed hardware cost
• One-time investment

• Predictable long-term budgeting

• Scalable intelligence without scalable bills

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

17

Power Efficiency and Battery Constraints

• Cloud-based inference = constant transmission = high energy

• Edge inference = no round trip, less communication overhead

• Edge AI hardware (ARM, NPU):
• Lower energy consumption

• Better thermal behavior

• Combined with:
• Low-power wireless (LoRa, NB-IoT, BLE)

• Smart sampling or event-based communication

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

18

Strategic Deployment: Cloud vs Edge

• Cloud inference:
• Centralized, scalable, fast iteration

• Risk of vendor lock-in and rising costs

• Edge inference:
• Local control, privacy, and reliability

• Greater autonomy and offline capability

• On-premise:
• Local server in same facility

• Useful in hospitals, factories, defense

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

19

When Edge AI is Not the Right Fit

• Edge AI is powerful — but not universal

• Avoid for:
• Large-scale language models

• Collaborative inference

• Frequent model updates

→ Choose edge only when justified by
latency, privacy, bandwidth, or autonomy

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

20

Advantages of Edge AI

• Latency: Respond in real time

• Bandwidth: Reduce data transmission

• Resilience: Survive network failures

• Privacy: Keep data local

• Cost: Lower and more predictable

• Energy: Enable battery-powered ML

• Flexibility: Cloud, edge, or hybrid

→ Edge AI = smarter, faster inference in the real world

Overview of Edge Hardware and
Accelerators

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

22

Introduction to Edge Hardware

• What kind of hardware will run your model?

• This chapter explores edge AI hardware:
• From microcontrollers to GPUs and NPUs

• Matching compute to application needs

• Essential for selecting or designing
reliable, efficient edge systems.

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

23

Industrial Priorities in Hardware Choice

• Industrial constraints ≠ Consumer constraints

• Key priorities:
• Long-term availability (10+ years)

• Pre-certified modules for CE, FCC, UL…

• Durability: temperature, vibration, dust…

• Sourcing risk and supply chain stability

• Even perfect boards can fail,
if they disappear in 3 years

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

24

Certification and Lifecycle Management

• Regulatory compliance is essential
• CE, FCC, UL often legally required

• Off-the-shelf modules may come pre-certified

• Lifecycle expectations:
• Deployment in 2027 → still repairable in 2037

• Hardware updates = expensive redesigns

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

25

Environmental Durability and Sourcing Risk

• Real deployments ≠ office conditions
• Outdoors, in vehicles, factories, etc.

• Industrial environments need:
• Wide temp range, rugged

connectors, sealed enclosures

• Sourcing matters:
• Can you buy 10,000 units next year?

• Will the part still exist?

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

26

Tooling, SDKs, and Ecosystem Maturity

• Good hardware needs great software

• Toolchains + docs often make or break a project

• Mature ecosystems = smooth development
• Good options: NVIDIA Jetson, Intel OpenVINO

• Cheap boards with bad SDKs = hidden costs

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

27

CPU, GPU, NPU: What’s What?

• CPU: Flexible, handles OS, control logic
• Good for setup, orchestration, signal processing

• GPU: Highly parallel compute device
• Great for matrix operations, AI inference

• NPU: Dedicated neural network accelerator
• Fast, efficient, application-specific (int8/fp16)

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

28

Performance Specs Can Mislead

• A board might advertise “10 TOPS”
→ That means 10 trillion operations per second

• But raw numbers don’t tell the full story:
• Are all your model’s layers actually supported?

• Is the memory bandwidth fast enough to keep up?

• Real-world performance depends on:
• Operator compatibility, toolchain quality

• How well your model maps to the hardware

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

29

Matching Workload to Hardware

• Choose hardware based on model type and input data:

• Time series → low compute

• Audio → medium compute

• Vision CNN → high compute

• Video / Transformers → very high compute

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

30

Time Series and TinyML

• Low sampling rate, low data volume

• Models: classifiers, anomaly detectors

• Typical hardware:
• MCUs with KBs of RAM

• TinyML toolchains

• Use cases:
• Gesture recognition, vibration analysis

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

31

Audio: More Demanding

• Higher sampling rates (16–48 kHz)

• Models:
• Keyword spotting, speaker ID

• Environmental audio classification

• Typical hardware:
• Optimized MCUs or entry-level NPUs

• Full speech recognition
→ Linux-class CPU + NPU

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

32

Image/Video: Matrix-Heavy

• Image classification, detection, segmentation
• Object tracking, pose estimation

• Smart cameras, industrial vision

• Inputs: 224×224 RGB
→ 50k+ pixels

• Requires:
• Dedicated NPUs

• Embedded GPUs

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

33

Transformers on Edge?

• High resource requirements:
• RAM, memory access, attention support

• Models:
• Whisper, ViT, LLaMA

• Most platforms can’t run them efficiently
• Some support emerging (e.g. Qualcomm, Hailo)

• Often needs desktop GPU

Let’s Look at Some Hardware

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

35

Microcontrollers for TinyML

• Microcontrollers (MCUs) are the smallest and
most common compute platforms in the world.

• Can be used for:
• Industrial monitoring

• Vibration analysis

• Anomaly detection

• Powering the rise of TinyML:
ML models on KB–MB memory devices

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

36

MCU Example: STM32 Series

• Widely used in industry
• Cortex-M0 (simple)

• STM32H7 (high-end with FP support)

• STM32N6: NPU for real-time vision

→ STM32N6 runs YOLOv8 at 30 FPS
within a battery-friendly package

→ Previously impossible on microcontrollers

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

37

Embedded Linux SoCs (With or Without NPU)

• When microcontrollers aren’t enough:
• Input is richer

• Models are bigger

• You need Linux

• Embedded Linux system-on-chips offer:
• MPUs with 100s of MBs to GBs of RAM

• Advanced I/O

• Real-time AI on-device

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

38

What Linux SoCs Enable

• Enable you to run full Linux operating system

• Support complex workloads such as:
• Robotics with real-time control loops

• Computer vision for detection or tracking

• Audio processing like speech commands

• Human–machine interfaces (displays)

→ Think: smart cameras, inspection
robots, AI-powered control units

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

39

Linux Chips with NPUs

• Many modern SoCs come with dedicated NPUs

• Offload inference from CPU

• Key examples:
• NXP i.MX 8M Plus: 2.3 TOPS, great docs

• TI TDA4VM: 8 TOPS, real-time AI

• Rockchip RK3588: octa-core CPU + 6 TOPS

• STM32MP25: 1.35 TOPS vision chip

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

40

Single-Board Computers and Modules

• Not every product starts from scratch

• Use single-board computers (SBCs)

• Or compute modules (SOMs)

• Pre-integrated hardware

• Speeds up development and prototyping

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

41

SBCs: Fast, Flexible Development

• Full computers on one PCB

• Run Linux out of the box

• Include HDMI, USB, Ethernet…

• Examples:
• Radxa ROCK 5 (Rockchip + 8K + AI)

• Toradex, SolidRun, Advantech (industrial)

• Raspberry Pi 5 (less AI, more community)

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

42

Modules: For Embedded Products

• Compute modules plug into carrier boards
• System-on-module (SOM), computer-on-module (COM) …

• Split high-frequency logic (module)
from application-specific I/O (carrier)

• Custom I/O on the carrier board:
• Motor control

• Camera input

• Industrial buses

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

43

Add-On Module Examples

• Toradex Aquila: NXP/TI SoCs, long-term support

• SolidRun SoMs: modular i.MX8 boards

• Raspberry Pi Compute Module 5

→ Ideal when you need
integration + certification + lifecycle

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

44

The NVIDIA Jetson Series

• Jetson = Embedded AI Powerhouse

• Multi-core ARM CPUs for general-purpose compute

• Embedded NVIDIA GPUs for high-throughput parallel processing

• Dedicated AI accelerators (DLA) for efficient deep learning inference

• Built for demanding edge use cases:
• Autonomous robotics

• Multi-camera video analytics

• Real-time vision, planning, decision-making

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

45

Jetson Form Factor and Integration

• Jetson = compute module, sits on carrier board

• Dev kits = reference carrier + module

• Carrier boards:
• Use 3rd-party carriers (Connect Tech, Forecr)

• Build your own custom carrier

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

46

Jetson Orin Lineup

• Jetson Orin Nano:
• Up to 67 TOPS, Power: 7–25W

• Jetson Orin NX:
• Up to 157 TOPS, Power: 10–40W

• Jetson AGX Orin:
• Up to 275 TOPS, Power: 15–60W

→ Choose based on model size
and real-time needs

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

47

Jetson = Hardware + Software

• Every Jetson runs JetPack:
• CUDA

• cuDNN

• TensorRT

• DeepStream

• Datacenter tools

• Optimized for embedded

• Full PyTorch support

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

48

External AI Accelerators (Hailo)

• Not every system has a good GPU/NPU

• Solution: External AI accelerators
• PCIe or M.2 form factor

• Plug into existing systems

• Add neural inference without a redesign

→ A leading example: Hailo modules

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

49

Hailo Overview

• Hailo-8:
• Up to 26 TOPS

• Power: ~2.5W

• PCIe / M.2

• Hailo-8L:
• Up to 13 TOPS

• Lower power

• Hailo-15:
• Combines ARM + NPU

• Smart vision chip

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

50

Hailo in the Edge AI Ecosystem

• Compact, passively cooled NPU

• Strong industrial adoption (Kontron, Advantech, Toradex…)

• Raspberry Pi AI Kit includes Hailo-8L

• Excellent SDK: supports ONNX

• Powerful Hailo Dataflow Compiler

→ Compact, powerful, and easy to integrate

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

51

FPGAs for Deterministic AI

• Most accelerators = fixed-function (CPU, GPU, NPU)

• FPGAs = reconfigurable logic
• Build custom hardware per application

• Ideal for:
• Real-time signal processing

• Deterministic vision pipelines

→ Great for edge AI with
hard real-time requirements

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

52

Popular FPGA Platforms

• AMD (Xilinx) and Intel (Altera) dominate

• Examples:
• AMD Kria K26:

• Zynq UltraScale+ MPSoC

• ARM + FPGA fabric

• Target: embedded vision

• Intel Agilex 5:
• ARM + DSP + AI blocks

• Mid-range automation & robotics

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

53

Intel-Compatible Edge Devices

• Not all edge AI runs on ARM

→ Example: Intel N100 (6W TDP, solid performance)

• Full Linux/Windows

• Mainstream toolchains

• Off-the-shelf I/O and enclosures

• Wide industrial vendor support

• Higher power usage than ARM

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

54

Intel OpenVINO for AI Inference

• Intel’s OpenVINO toolkit:
• Optimizes models for Intel CPUs, GPUs

• Supports: ONNX, PyTorch, TensorFlow

• Excellent library for:
• Visual inspection

• Predictive maintenance

• Anomaly detection

→ Avoids need for external
AI chips in many workloads

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

55

Industrial PCs (IPCs)

• When you need more power:
• Go from embedded boards → Industrial PCs

• IPCs = PC hardware in rugged form
• Dust-proof, fanless, vibration-resistant

• DIN rail mountable

• Real-time fieldbus support

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

56

Industrial PC Capabilities

• CPUs: Intel/AMD (high single/multi-core perf)

• OS: Linux or Windows

• AI Acceleration: high-end GPUs
• NVIDIA RTX cards (for vision or transformers)

→ In factories, inspection, machine control

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

57

PLCs with AI Capabilities

• PLCs = heart of real-time automation
• Deterministic timing, safety interlocks

• Often programmed in Structured Text

• New hybrid architectures:
• RTOS + Linux/Windows on same device

• Combines control + inference on one box

• Vendors: Siemens, Beckhoff, Schneider…

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

58

AI on the PLC?

1. On-PLC Inference
• Fast, deterministic, model size limited

2. Nearby Module/IPC
• More powerful, adds latency

3. Cloud or Central Server
• Most complex models, least real-time

→ Choose based on control loop timing
vs model complexity

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

59

Edge Hardware Landscape

• MCUs: ultra-low power, TinyML

• SoCs: balance of Linux and AI

• SBCs/Modules: fast time to market

• Jetson: high-performance embedded AI

• Hailo: external acceleration, flexible

• FPGAs: custom logic, deterministic control

• Intel x86: mature, flexible platforms

• IPCs: rugged, GPU-ready edge systems

• PLCs: real-time control with AI support

Model Optimization Techniques

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

61

Why Optimize Models for the Edge?

• Most models are trained on server hardware
• Large GPUs, plenty of RAM, fast I/O

• But edge devices face real limits:
• Small memory footprint

• Slow CPU/GPU

• Hard latency deadlines

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

62

Reality Check: Inference-Time Memory

• Model weights are usually stored in FP32
• 4 bytes per parameter

• 1M parameters = 4 MB weight file

• But inference also needs:
• Activation maps (layer outputs)

• Temporary buffers, which are much larger

• Vision models often use 5–10× more RAM at inference time

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

63

ResNet-50: A Classic Heavyweight

• ~25 million parameters → ~100 MB (FP32)

• Inference-time memory: hundreds of MB

• Fine on desktop GPUs

• On Jetson Orin Nano (4 GB RAM):
• GPU memory on Jetson is shared with operating system

• Reaching limits when combined with camera input or other tasks

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

64

YOLOv5s: Light, but Still Demanding

• ~7.5 million parameters (~30 MB in FP32)

• Real-time inference on:
• Jetson Orin: OK

• Raspberry Pi 4: CPU-only > 500 ms/frame

• Needs acceleration for real-time performance

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

65

MobileNetV2: Designed for Efficiency

• ~3.5 million parameters → ~14 MB

• On Radxa Rock 3:
• Automotive-grade single-board computer

• INT8 quantized model runs in real time (60Hz)

• Inference time cut by >50% with quantization

→ Smaller model, smarter design = edge performance

Who’s Doing the Optimization?

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

67

1. Training Frameworks

• Where models are built and trained

• Usually used in the cloud or on dev machines

• PyTorch:
• Most widely used framework today

• Pythonic, flexible, dominant in research and prototyping

• TensorFlow / Keras:
• Still widely adopted, especially in production ecially mobile

• Less popular in current research circles

→ These are not deployment-optimized, but they’re the starting point

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

68

2. General-Purpose Runtimes (1/2)

• Cross-platform engines, not hardware specific

• ONNX Runtime:
• Cross-platform, high-performance

• Supports CPU, GPU, and NPU backends

• Automatically applies quantization, operator fusion, graph rewrites

• TensorFlow Lite (TFLite):
• Lightweight, mature inference engine from TensorFlow

• Targets mobile, embedded Linux, and microcontrollers (Cortex-M)

• Includes quantization tooling and runtime acceleration

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

69

2. General-Purpose Runtimes (2/2)

• TorchScript:
• PyTorch’s native model export format

• Used for deployment in mobile apps and C++ environments

• Easier to use than ONNX for simple deployment within PyTorch ecosystem

• ExecuTorch:
• New runtime from PyTorch team for edge devices

• Supports Android, iOS, and some microcontrollers

• Leverages PyTorch 2 export tools

• Promising, but not yet mature or widely used

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

70

3. Vendor-Specific SDKs and Toolchains (1/2)

• Provide maximum performance for specific hardware

• TensorRT (NVIDIA):
• Converts ONNX models into GPU-optimized engines

• Supports FP16, INT8, layer fusion, memory tuning

• OpenVINO (Intel):
• Targets CPUs, iGPUs, and FPGAs

• Includes quantization, pruning-aware tools, strong runtime

• TI EdgeAI SDK:
• For TI SoCs (e.g. TDA series)

• Hardware-aware quantization and model compilation

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

71

3. Vendor-Specific SDKs and Toolchains (2/2)

• STM32Cube.AI:
• Compiles models to efficient C code for STM32 MCUs

• Applies static memory allocation and INT8 quantization

• Hailo SDK:
• For Hailo-8 external NPUs, supports ONNX models

• RKNPU Toolchain:
• Targets Rockchip SoCs with NPUs, optimized execution graphs

• and many more…

What Kinds of Optimizations Are
There?

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

73

Numeric Precision and Data Types

• Most models use 32-bit floating point (FP32)

• Edge devices benefit from smaller formats:
• FP16: Half-size, faster on GPUs

• INT8: 1 byte per value, major speed gains

• BF16 (Brain Float 16): TPUs, Intel CPUs

• INT4: Extreme compression

→ FP16 and INT8 are the workhorses of edge AI

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

74

What is Quantization?

• Converts weights/activations to lower-precision integers
• Saves memory (4× smaller models)

• Speeds up inference (2 to 4× faster)

• Enables deployment to constrained devices

• Most common: INT8 quantization
• Native support on NPUs, CPUs, and MCUs

→ Quantization is key to efficient edge AI

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

75

Post-Training Quantization (PTQ)

• Apply quantization after training — no retraining needed

• Converts FP32 → INT8
• Uses scaling factors to map float to int

• Keeps model structure the same

• Accuracy drops possible, but often small

→ Fast and easy way to reduce model size

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

76

PTQ: Dynamic vs Static Quantization

• Dynamic Quantization:
• Quantize weights only

• Activations quantized on-the-fly

• Works well for LSTMs, transformers

• Static Quantization:
• Quantize both weights and activations

• Requires calibration dataset

• Better accuracy for vision models

→ Tradeoff: simplicity vs performance

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

77

Quantization Formula & Strategies

float_value = scale × (int_value - zero_point)

• Scale = adjusts float to int range

• Zero-point = optional offset (for asymmetric quantization)

• Symmetric quantization = zero-point = 0 (simpler, faster)

• Per-tensor quantization: 1 scale/zero-point per layer

• Per-channel quantization: 1 scale per output channel
• More accurate, especially for CONV layers

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

78

PTQ Support in Frameworks

• PyTorch:
• torch.quantization supports dynamic & static PTQ

• ONNX Runtime:
• Includes quantization toolkit

• TensorRT:
• Uses calibration steps to compute ranges

• OpenVINO:
• NNCF toolkit with strong calibration support

→ All major runtimes support PTQ workflows

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

79

Quantization-Aware Training (QAT)

• Simulates quantization during training
• Inserts fake quantization operators

• Model learns to handle rounding noise

• Gradients still use FP32

• Final model runs in INT8 with better accuracy

→ Ideal for sensitive models or tight accuracy budgets

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

80

QAT in Practice

• PyTorch: Use prepare_qat() → train → convert()

• ONNX Runtime: Can run QAT-trained models (from PyTorch)

• TensorRT: Supported with NVIDIA Model Optimizer library

• OpenVINO: Integrated with NNCF: simulate quantization + export

→ Adds complexity, but enables high-accuracy INT8 inference

→ Use QAT when PTQ accuracy drop is unacceptable

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

81

Pruning: Slimming Down the Network

• Pruning = removing parts of a model

• Many weights/activations are not important

• Goal: smaller, faster models
with minimal accuracy loss

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

82

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

83

Unstructured vs Structured Pruning

• Unstructured:
• Removes weights near zero

• Model shape unchanged

• No speedup on most hardware

• Structured:
• Removes filters, channels, or blocks

• Model becomes smaller and faster

• Greater risk of accuracy drop

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

84

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

85

Special Case: 2:4 Sparsity Pruning

• Format where 2 of every 4 weights = 0

• Supported by modern NVIDIA GPUs, some other NPUs

• Benefits:
• Compression + real runtime acceleration

• More structured than unstructured pruning

→ Requires hardware + compiler support

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

86

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

87

Pruning in Practice

• PyTorch: torch.nn.utils.prune for structured/unstructured pruning

• TensorRT: Supports pruning and 2:4 sparsity with Model Optimizer

• OpenVINO: Pruning-aware training via NNCF

→ Toolchain support varies by target hardware

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

88

Graph-Level Optimizations

• Deployment tools transform the model graph for performance
• Graph = operations + data dependencies

• Optimizations reduce memory use, kernel overhead, and latency

→ All done automatically at export or runtime

• You don’t have to apply these manually

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

89

Operator Fusion

• Combines multiple operations into one:
• Example: Conv + BatchNorm + ReLU

• Benefits:
• Fewer memory accesses

• Less kernel launch overhead

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

90

More Graph Optimizations

• Constant folding: pre-compute static operators

• Dead code elimination: remove unused branches

• Transpose folding: reduce layout changes (e.g. NHWC NCHW)

• Memory reuse: reuse intermediate buffers to save RAM

• Layout optimization: align memory layout with hardware

• Static scheduling: pre-plan execution order + buffers

→ Often invisible but powerful

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

91

Which Tools Apply These?

• ONNX Runtime:
• Graph optimizations enabled by default

• TensorRT:
• Aggressive fusion + memory planning

• Uses benchmarking to find optimal graph

• OpenVINO:
• Tailored fusion passes for Intel CPUs/GPUs

→ Export quality + runtime = huge difference in performance

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

92

Knowledge Distillation: Core Idea

• Teach a small model (student) using
predictions from a larger model (teacher)

• Student learns correct labels, and also:
• Teacher’s confidence distribution

• Output behavior on ambiguous inputs

→ Improves student accuracy

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

93

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

94

Synthetic Data: What and Why

• Synthetic data = artificially generated training data
• Not an optimization technique, strictly speaking

• Data comes from:
• Simulators (Unity, Isaac Sim, CARLA)

• 3D renderers (Blender)

• Generative models (Stable Diffusion)

• Large language models (GPT, Llama)

→ Can recover accuracy lost to optimization

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

95

Synthetic Data + Edge AI = Future

• Use foundation models to:
• Generate labeled samples (“red pipe on gray background”)

• Auto-label unlabeled images or logs

• Small, optimized networks can:
• Be trained on synthetic datasets

• Run faster inference in the field

→ Synthetic + distilled + optimized
= the future of edge AI

Efficient Model Architectures

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

97

Lightweight Vision Models

• Lightweight models are designed for efficiency
• Prioritize: smaller size, fewer FLOPs, faster inference

• Depthwise-separable convolutions

• Inverted residuals + bottlenecks

• Squeeze-and-excitation blocks

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

98

Popular Lightweight Vision Models

• MobileNetV2/V3: 2.5M–3.4M params, fast and widely supported

• EfficientNet-Lite: Great accuracy/size ratio, ONNX-ready

• YOLO-Tiny: Real-time object detection on CPUs and GPUs

• MobileNet-SSD: Compact detector, OpenVINO ready

• DeepLabv3+ (MobileNet): Lightweight segmentation

→ Start here, then optimize further

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

99

Models for Time-Based Inputs

• CNN-1D: Simple, fast, ideal for low-frequency signals

• Small RNNs (LSTM/GRU): Long memory, efficient inference

• TCNs: Dilated convolutions, good for anomaly detection

• Spectrogram-based CNNs: Transform audio into images

• CRNNs: Combine CNN + RNN, good for sound events

→ TCNs + Spectrogram CNNs are go-to choices today

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

100

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

101

Neural Architecture Search (NAS): Worth It?

• NAS = automated search for optimal architectures

• Promises better accuracy – efficiency trade-offs

• Requires huge compute (train 100s–1000s of models)

• Complex, costly, and hard to validate

• Luckily, MobileNetV3, EfficientNet = NAS-designed

→ For most teams: skip the search, use existing NAS models

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

102

Optimizing for the Edge

• We’ve covered the core techniques of edge AI:
• Quantization (post-training and during)

• Pruning (structured/sparsity)

• Knowledge distillation

• Graph-level optimization

• Lightweight architectures

→ These aren’t academic tricks, they’re
essential for running AI at the edge

Exporting Models with the ONNX
Format

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

104

From Training to Inference (ONNX)

• Training frameworks (e.g. PyTorch, TensorFlow):
• Gradient computation

• Debugging and visualization

• Rely on Python, which isn’t ideal

• These features are ideal for
research, not for deployment.

• For real-time inference, we
need something lighter and faster

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

105

Export Format Options

• TorchScript model file
• PyTorch-native, not cross-framework

• Works in C++, mobile apps

• TensorFlow Lite model file
• Only for TensorFlow Lite (Micro)

• Optimized for mobile, microcontrollers

• ONNX (Open Neural Network Exchange)
• Cross-framework standard, widely used

• Compatible with many inference engines

→ We focus on ONNX for its flexibility

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

106

What Is ONNX?

• Open Neural Network Exchange (ONNX) is:
• A portable file format for machine learning models

• Created by Microsoft and Facebook (2017)

• Widely supported by almost all ML tools

Export models once, run anywhere!

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

107

ONNX File Contents

An .onnx file contains:

• The computation graph (layers/operations)

• The learned weights (parameters)

• Input/output specs (shapes, dtypes)

→ Portable, compact,
ready for deployment

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

108

ONNX vs ONNX Runtime

• ONNX = file format (model storage)

• ONNX Runtime = inference engine (model execution)

• You can run ONNX in many runtimes:
• TensorRT

• OpenVINO

• And more…

→ ONNX is the file format,
runtimes are the interpreters

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

109

Exporting PyTorch Models to ONNX

• PyTorch has built-in support for exporting to ONNX.

• Use the torch.onnx.export() function.

• Exporting involves:
1. Defining or loading a model

2. Preparing a dummy input

3. Calling the export function with key options

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

110

Step 1: Define or Load Your Model

class TinyCNN(nn.Module):
def __init__(self):

super().__init__()
self.conv = nn.Conv2d(1, 8, 3, 1, 1)
self.fc = nn.Linear(8 * 28 * 28, 10)

def forward(self, x):
x = torch.relu(self.conv(x))
x = x.view(x.size(0), -1)
return self.fc(x)

model = TinyCNN()
model.eval() # Eval mode for ONNX export!

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

111

Step 2: Prepare Dummy Input

dummy_input = torch.rand(1, 1, 28, 28)

• Required for tracing the computation graph

• Must match the input shape expected by the model

• Can be random, the data itself doesn’t matter

→ Often one sample with batch size 1

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

112

Step 3: Export the Model

torch.onnx.export(
model, dummy_input, "tiny_cnn.onnx",
input_names=["input"], output_names=["output"],
dynamic_axes={"input": {0: "batch"}, "output": {0: "batch"}},
opset_version=20,

)

• Creates a .onnx file containing:
• Graph structure

• Learned parameters

• Input/output names

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

113

Key Export Options to Know

• input_names / output_names
• Assigns names to the input and output nodes of the graph

• dynamic_axes
• Enables variable batch sizes or input lengths

• opset_version
• Controls which ONNX operators are used

• PyTorch supports up to version 20 (as of 2025)

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

114

Visualizing with Netron

• Netron: graphical model viewer
• Opens .onnx files in the browser

• Great for sanity checks and optimization review

• Lets you:
• See full computation graph

• Click to inspect layers and shapes

• Compare versions side by side

Visit: https://netron.app/

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

115

Efficient Inference with ONNX
Runtime

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

117

What Is ONNX Runtime?

• A fast, lightweight inference engine for ONNX models

• Developed by Microsoft — open-source and cross-platform

• Designed to run models efficiently on:
• CPUs, GPUs, embedded devices

• Can be embedded into:
• Edge applications

• Mobile apps

• Server APIs

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

118

Why Use ONNX Runtime?

• Optimized for inference
• Strips away training overhead

• Focuses on speed, memory efficiency, and portability

• Hardware-agnostic
• Not tied to one vendor or device

• Same model can run on many platforms

• Supports Python, but also:
• C++, Java, C#, JavaScript, and others

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

119

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

120

Execution Providers in ONNX Runtime

Provider Hardware Notes

CPU All platforms Always works, slower

CUDA NVIDIA GPUs Fast, needs CUDA/cuDNN

TensorRT NVIDIA GPUs Very fast, startup overhead

OpenVINO Intel (CPU, GPU) Optimized for Intel stack

XNNPACK ARM, x86 CPUs Good on mobile and edge

• Backends that run parts of the model on specific hardware.

• ONNX Runtime delegates calculations to these providers.

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

121

Example: Full Inference Pipeline

import onnxruntime as ort
import numpy as np

session = ort.InferenceSession("model.onnx")
input_name = session.get_inputs()[0].name

batch = np.random.rand(2, 1, 28, 28).astype(np.float32)
outputs = session.run(None, {input_name: batch})

print("Predictions:", outputs[0])

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

122

Graph-Level Optimizations

• ONNX Runtime doesn’t execute the graph as-is

• It applies automatic graph-level optimizations
• Fuses patterns (Conv + BN + ReLU)

• Optimizes reshapes/transposes

• Precomputes constant subgraphs

• Removes identity operators

• And many more…

→ Boosts inference speed and reduces memory use

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

123

Quantization in ONNX Runtime

• ONNX Runtime supports Post-Training Quantization (PTQ)
• It does not support Quantization-Aware Training (QAT)

• Although you can QAT with PyTorch and run with ONNX Runtime

• PTQ converts weights (and activations) to INT8.

• Two main flavors:
• Dynamic Quantization

• Static Quantization

→ Shrinks model size and boosts inference speed with minimal effort.

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

124

Dynamic Quantization

• Simplest form of quantization.

• Converts weight tensors from FP32 to INT8.

• Activations stay in FP32 — quantized on the fly at runtime.

• No calibration data required.

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

125

Dynamic Quantization: Code Example

from onnxruntime.quantization import quantize_dynamic

quantize_dynamic(
model_input="model_processed.onnx",
model_output="model_dynamic.onnx",
per_channel=True, # Optional but helpful

)

• per_channel: Improves accuracy, especially for Conv layers.

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

126

Static Quantization

• Quantizes both weights and activations.

• Requires a calibration dataset to measure activation ranges.

• More setup, but better performance

1. Create a calibration data reader.

2. Provide representative input samples.

3. Run the quantize_static() function.

→ You’ll get an INT8 model optimized for runtime memory and speed.

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

127

Static Quantization: Code Example

from onnxruntime.quantization import quantize_static
from onnxruntime.quantization import CalibrationDataReader

class MyDataReader(CalibrationDataReader):
def __init__(self): pass
def get_next(self): return next(self.data, None)

quantize_static(
model_input="model_processed.onnx",
model_output="model_static.onnx",
calibration_data_reader=MyDataReader(),
per_channel=True)

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

128

Recap: Dynamic vs Static

Dynamic Quantization

• Easiest to apply

• No calibration needed

• Less effective on CNNs

Static Quantization

• Best performance on edge hardware

• Fully INT8 model

• Needs calibration data

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

129

Float16: A GPU-Friendly Optimization

• Not all models run on ARM or MCUs

• On GPUs, float16 (FP16) is a great middle ground:
• Faster than FP32

• Safer than INT8

• No retraining or calibration needed

→ Use FP16 when deploying on Jetson, industrial PCs or GPU servers

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

130

Converting to Float16 in ONNX

import onnx
from onnxconverter_common import float16

model = onnx.load("model_fp32.onnx")
model_fp16 = float16.convert_float_to_float16(model)
onnx.save(model_fp16, "model_fp16.onnx")

• Converted model runs faster on GPU, with half the memory.

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

131

ONNX Runtime Pipeline

You now know how to:

• Export models from PyTorch to ONNX

• Optimize graphs at runtime

• Apply dynamic and static quantization

• Convert models to float16

• Run inference on real hardware

High-Performance Deployment
with TensorRT

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

133

What Is TensorRT?

• TensorRT is NVIDIA’s high-performance inference engine.

• It compiles trained models into optimized GPU executables.

• Works with models exported to ONNX format.

• Supports a wide range of NVIDIA devices:
• Desktop RTX, data center GPUs, Jetson.

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

134

What TensorRT Does

• Runs models faster than PyTorch/TF/ONNX Runtime.

• Uses graph compilation, not layer-by-layer interpretation.

• Converts a model into a static inference engine

• Produces hardware-specific binaries for maximum speed.

• Ideal for production-grade deployments on NVIDIA GPUs.

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

135

Graph Compilation: The Secret Sauce

• Compilation occurs once, when building the engine.

• Process:
1. Parse the model graph

2. Optimize the graph structure

3. Benchmark tactics per layer

4. Plan memory, serialize engine

→ Inference becomes fast, low-latency, and efficient.

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

136

Step 1: Graph Parsing

• ONNX model is parsed into a DAG (directed acyclic graph).

• Validates operator support, shapes, and connectivity.

• Unsupported operators cause build failure.

• Most common operators from PyTorch/TF are supported.

→ Optional: add custom plugins for unsupported layers.

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

137

Step 2: Graph-Level Optimization

• TensorRT applies static graph rewrites:
• Operator fusion (e.g. Conv + ReLU)

• Constant folding (precompute static operators)

• Dead node elimination

• Precision calibration for FP16/INT8

→ Reduces kernel count, memory usage, and latency.

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

138

Step 3: Tactic Selection

• For each op, TensorRT tries many GPU kernels (tactics).
• A single layer (e.g. Conv2D) may have 30+ kernel variants.

• Benchmarks tactics to find the fastest one.

• Based on:
• Input shapes

• GPU architecture

• Precision settings

→ This makes build time longer, but inference blazing fast.

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

139

Step 4: Memory Planning & Serialization

• Allocates memory for:
• Inputs and outputs

• Intermediate tensors

• Uses smart reuse to reduce peak memory.

• Produces a serialized engine file:
• Loadable without recompilation

→ Ready for production deployment

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

140

Building and Running TensorRT Engines

• After exporting a model to ONNX,
the next step is to build a TensorRT engine.

• Steps:
1. Load the ONNX model

2. Compile it into an engine

3. Run inference using GPU memory

→ All done in Python using TensorRT + PyCUDA.

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

141

Step 1: Load the ONNX Model

logger = trt.Logger(trt.Logger.INFO)
builder = trt.Builder(logger)
flags = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
network = builder.create_network(flags)
parser = trt.OnnxParser(network, logger)

with open("model.onnx", "rb") as f:
if not parser.parse(f.read()):

raise RuntimeError("Failed to parse ONNX")

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

142

Step 2: Build the Engine

config = builder.create_builder_config()
config.max_workspace_size = 1 << 30 # 1 GB

if builder.platform_has_fast_fp16:
config.set_flag(trt.BuilderFlag.FP16)

engine = builder.build_engine(network, config)

• Output: GPU-optimized inference engine

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

143

Step 3: Inference with the Engine

context = engine.create_execution_context()
d_input = cuda.mem_alloc(input_data.nbytes)
d_output = cuda.mem_alloc(output_data.nbytes)

cuda.memcpy_htod(d_input, input_data)
context.execute_v2([int(d_input), int(d_output)])
cuda.memcpy_dtoh(output_data, d_output)

• Note: manual memory transfers to/from GPU

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

144

Serializing Engines

engine_bytes = engine.serialize()
with open("model.engine", "wb") as f:

f.write(engine_bytes)

• Saves fully optimized engine to disk

• Avoids rebuild time during app startup

→ Required for fast startup in production.

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

145

Deserializing Engines

runtime = trt.Runtime(trt.Logger(trt.Logger.INFO))
with open("model.engine", "rb") as f:

engine = runtime.deserialize_cuda_engine(f.read())
context = engine.create_execution_context()

• Load precompiled engine — no ONNX needed

• Works only on compatible GPUs

→ Fast and lightweight deployment option.

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

146

TensorRT - Lower Precision

• Lower precision = faster inference + smaller models

• FP32: default, precise, slowest

• FP16: faster, halves memory, no calibration needed

• INT8: fastest, needs quantization metadata

• FP8: experimental, Hopper GPUs only

→ Reducing bit width improves performance and power efficiency.

Advanced Techniques with Model
Optimizer

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

148

What Is Model Optimizer?

• ModelOpt = NVIDIA’s Model Optimizer library for PyTorch

• Works before export, during training

• Optimizes model before ONNX or TensorRT

• Focuses on model-level compression,
not just runtime optimization.

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

149

Where Model Optimizer Fits

PyTorch

↓

(ModelOpt: optional)

↓

ONNX export

↓

TensorRT engine build

↓

GPU inference

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

150

What Model Optimizer Enables

• Compression-aware training and structure refinement.

• Supports techniques like:
• Quantization-aware training (QAT)

• Structured pruning

• 2:4 sparsity patterns

• Knowledge distillation

• NAS-assisted architecture search

→ All applied directly to your PyTorch model.

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

151

Model Optimizer Pipeline

1. Train a model in PyTorch (normal LR)

2. Apply Model Optimizer:
• Quantization-aware training

• Structured pruning or 2:4 sparsity

3. Fine-Tune the model (lower LR, less epochs)

4. Export to ONNX (as always)

5. Build a TensorRT engine (flags: INT8, sparse)

→ Deploy to NVIDIA GPU (desktop, Jetson, server)

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

152

Quantization-Aware Training (QAT)

import modelopt.torch.quantization as mtq

def calibrate(model):
model.eval()
with torch.no_grad():

for x in calibration_data:
model(x)

model_q = mtq.quantize(model, mtq.INT8_DEFAULT_CFG, calibrate)

• Simulates INT8 using fake quantization layers

• Enables immediate INT8 export or QAT fine-tuning

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

153

Structured Pruning

pruned_model, _ = mtp.prune(
model=model,
dummy_input=torch.rand(1, 1, 28, 28),
constraints={"flops": "50%"},
mode="fastnas",
config={

"data_loader": train_loader,
"score_func": evaluate_accuracy,

• Targets 50% FLOPs reduction

• fastnas = fast search for performant submodels

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

154

How Pruning Works

• Traces model with dummy input

• Evaluates subnetwork performance using your score_func

• Physically removes channels (e.g. from conv layers)

• Supports constraints:
• "flops": Number of computations

• "params": Number of parameters

→ Final model is structurally leaner

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

155

2:4 Sparsity Pruning

• Enforces a hardware-friendly pattern:
• For every 4 weights, 2 are zero

• Supported from NVIDIA Ampere (2020)

• Enables sparse Tensor Core kernels

→ Delivers 1.5–2× speedup
without model redesign

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

156

2:4 Sparsity with Model Optimizer

import modelopt.torch.sparsify as mts

sparse_model = mts.sparsity(model, “sparse_magnitude")

• Modifies weights to match 2:4 pattern

• Can be applied post-training or during training

→ Sparse kernels = real performance gains

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

157

Advanced Features and Frontiers

• AutoQuantize (Model Optimizer)
• Chooses best precision per layer: INT8, FP8 or FP16

• New Precision Formats: FP8, INT4
• Ultra-low memory, high-speed inference

• Runtime Adaptation & LoRA on the Edge
• Lightweight fine-tuning techniques like LoRA

• And so much more…

You’ve Reached the Last Layer

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

159

From Training to Edge Inference

You now know how to:

• Select and train models for constrained hardware

• Optimize structure and precision for deployment

• Export to ONNX and build efficient inference engines

• Accelerate with ONNX Runtime or NVIDIA TensorRT

• Use ModelOpt to squeeze out speed and memory savings

→ This isn’t just theory — it’s a full path to production

V
LA

IO
 T

ET
R

A
 M

LO
p

s4
EC

M

160

Thank You & Good Luck!

• Keep learning as hardware evolves.

• Remember: deployment is where real-world ML starts.

Good luck and build something great!

	Dia 1: Edge AI Deployment: Optimizing and Scaling AI Models on Devices
	Dia 2: Welcome to Day 3: Edge AI Deployment
	Dia 3: Course Overview
	Dia 4: Course Goals
	Dia 5: Table of Contents (1/2)
	Dia 6: Table of Contents (2/2)
	Dia 7: Introduction to Edge AI
	Dia 8: What is Edge AI?
	Dia 9: How Edge AI Works
	Dia 10: On-Device Training: Rare but Possible
	Dia 11: Where Edge AI Is Used
	Dia 12: Latency: Real-Time Reactions
	Dia 13: Bandwidth: Local Insights, Not Raw Streams
	Dia 14: Reliability: When the Network Fails
	Dia 15: Privacy and Compliance
	Dia 16: Cost: Economics of Edge AI
	Dia 17: Power Efficiency and Battery Constraints
	Dia 18: Strategic Deployment: Cloud vs Edge
	Dia 19: When Edge AI is Not the Right Fit
	Dia 20: Advantages of Edge AI
	Dia 21: Overview of Edge Hardware and Accelerators
	Dia 22: Introduction to Edge Hardware
	Dia 23: Industrial Priorities in Hardware Choice
	Dia 24: Certification and Lifecycle Management
	Dia 25: Environmental Durability and Sourcing Risk
	Dia 26: Tooling, SDKs, and Ecosystem Maturity
	Dia 27: CPU, GPU, NPU: What’s What?
	Dia 28: Performance Specs Can Mislead
	Dia 29: Matching Workload to Hardware
	Dia 30: Time Series and TinyML
	Dia 31: Audio: More Demanding
	Dia 32: Image/Video: Matrix-Heavy
	Dia 33: Transformers on Edge?
	Dia 34: Let’s Look at Some Hardware
	Dia 35: Microcontrollers for TinyML
	Dia 36: MCU Example: STM32 Series
	Dia 37: Embedded Linux SoCs (With or Without NPU)
	Dia 38: What Linux SoCs Enable
	Dia 39: Linux Chips with NPUs
	Dia 40: Single-Board Computers and Modules
	Dia 41: SBCs: Fast, Flexible Development
	Dia 42: Modules: For Embedded Products
	Dia 43: Add-On Module Examples
	Dia 44: The NVIDIA Jetson Series
	Dia 45: Jetson Form Factor and Integration
	Dia 46: Jetson Orin Lineup
	Dia 47: Jetson = Hardware + Software
	Dia 48: External AI Accelerators (Hailo)
	Dia 49: Hailo Overview
	Dia 50: Hailo in the Edge AI Ecosystem
	Dia 51: FPGAs for Deterministic AI
	Dia 52: Popular FPGA Platforms
	Dia 53: Intel-Compatible Edge Devices
	Dia 54: Intel OpenVINO for AI Inference
	Dia 55: Industrial PCs (IPCs)
	Dia 56: Industrial PC Capabilities
	Dia 57: PLCs with AI Capabilities
	Dia 58: AI on the PLC?
	Dia 59: Edge Hardware Landscape
	Dia 60: Model Optimization Techniques
	Dia 61: Why Optimize Models for the Edge?
	Dia 62: Reality Check: Inference-Time Memory
	Dia 63: ResNet-50: A Classic Heavyweight
	Dia 64: YOLOv5s: Light, but Still Demanding
	Dia 65: MobileNetV2: Designed for Efficiency
	Dia 66: Who’s Doing the Optimization?
	Dia 67: 1. Training Frameworks
	Dia 68: 2. General-Purpose Runtimes (1/2)
	Dia 69: 2. General-Purpose Runtimes (2/2)
	Dia 70: 3. Vendor-Specific SDKs and Toolchains (1/2)
	Dia 71: 3. Vendor-Specific SDKs and Toolchains (2/2)
	Dia 72: What Kinds of Optimizations Are There?
	Dia 73: Numeric Precision and Data Types
	Dia 74: What is Quantization?
	Dia 75: Post-Training Quantization (PTQ)
	Dia 76: PTQ: Dynamic vs Static Quantization
	Dia 77: Quantization Formula & Strategies
	Dia 78: PTQ Support in Frameworks
	Dia 79: Quantization-Aware Training (QAT)
	Dia 80: QAT in Practice
	Dia 81: Pruning: Slimming Down the Network
	Dia 82
	Dia 83: Unstructured vs Structured Pruning
	Dia 84
	Dia 85: Special Case: 2:4 Sparsity Pruning
	Dia 86
	Dia 87: Pruning in Practice
	Dia 88: Graph-Level Optimizations
	Dia 89: Operator Fusion
	Dia 90: More Graph Optimizations
	Dia 91: Which Tools Apply These?
	Dia 92: Knowledge Distillation: Core Idea
	Dia 93
	Dia 94: Synthetic Data: What and Why
	Dia 95: Synthetic Data + Edge AI = Future
	Dia 96: Efficient Model Architectures
	Dia 97: Lightweight Vision Models
	Dia 98: Popular Lightweight Vision Models
	Dia 99: Models for Time-Based Inputs
	Dia 100
	Dia 101: Neural Architecture Search (NAS): Worth It?
	Dia 102: Optimizing for the Edge
	Dia 103: Exporting Models with the ONNX Format
	Dia 104: From Training to Inference (ONNX)
	Dia 105: Export Format Options
	Dia 106: What Is ONNX?
	Dia 107: ONNX File Contents
	Dia 108: ONNX vs ONNX Runtime
	Dia 109: Exporting PyTorch Models to ONNX
	Dia 110: Step 1: Define or Load Your Model
	Dia 111: Step 2: Prepare Dummy Input
	Dia 112: Step 3: Export the Model
	Dia 113: Key Export Options to Know
	Dia 114: Visualizing with Netron
	Dia 115
	Dia 116: Efficient Inference with ONNX Runtime
	Dia 117: What Is ONNX Runtime?
	Dia 118: Why Use ONNX Runtime?
	Dia 119
	Dia 120: Execution Providers in ONNX Runtime
	Dia 121: Example: Full Inference Pipeline
	Dia 122: Graph-Level Optimizations
	Dia 123: Quantization in ONNX Runtime
	Dia 124: Dynamic Quantization
	Dia 125: Dynamic Quantization: Code Example
	Dia 126: Static Quantization
	Dia 127: Static Quantization: Code Example
	Dia 128: Recap: Dynamic vs Static
	Dia 129: Float16: A GPU-Friendly Optimization
	Dia 130: Converting to Float16 in ONNX
	Dia 131: ONNX Runtime Pipeline
	Dia 132: High-Performance Deployment with TensorRT
	Dia 133: What Is TensorRT?
	Dia 134: What TensorRT Does
	Dia 135: Graph Compilation: The Secret Sauce
	Dia 136: Step 1: Graph Parsing
	Dia 137: Step 2: Graph-Level Optimization
	Dia 138: Step 3: Tactic Selection
	Dia 139: Step 4: Memory Planning & Serialization
	Dia 140: Building and Running TensorRT Engines
	Dia 141: Step 1: Load the ONNX Model
	Dia 142: Step 2: Build the Engine
	Dia 143: Step 3: Inference with the Engine
	Dia 144: Serializing Engines
	Dia 145: Deserializing Engines
	Dia 146: TensorRT - Lower Precision
	Dia 147: Advanced Techniques with Model Optimizer
	Dia 148: What Is Model Optimizer?
	Dia 149: Where Model Optimizer Fits
	Dia 150: What Model Optimizer Enables
	Dia 151: Model Optimizer Pipeline
	Dia 152: Quantization-Aware Training (QAT)
	Dia 153: Structured Pruning
	Dia 154: How Pruning Works
	Dia 155: 2:4 Sparsity Pruning
	Dia 156: 2:4 Sparsity with Model Optimizer
	Dia 157: Advanced Features and Frontiers
	Dia 158: You’ve Reached the Last Layer
	Dia 159: From Training to Edge Inference
	Dia 160: Thank You & Good Luck!

